1,729 research outputs found

    Regional variation in digital cushion pressure in the forefeet of horses and elephants

    Get PDF
    In this study, we seek to understand how the digital cushion morphologies evident in horse and elephant feet influence internal and external foot pressures. Our novel use of invasive blood pressure monitoring equipment, combined with a pressure pad and force plate, enabled measurements of (ex vivo) digital cushion pressure under increasing axial loads in seven horse and six elephant forefeet. Linear mixed effects models (LMER) revealed that internal digital cushion pressures increase under load and differ depending on region; elephant feet experienced higher magnitudes of medial digital cushion pressure, whereas horse feet experienced higher magnitudes of centralised digital cushion pressure. Direct comparison of digital cushion pressure magnitudes in both species, at equivalent loads relative to body weight, revealed that medial and lateral pressures increased more rapidly with load in elephant limbs. Within the same approximate region, internal pressures exceeded external, palmar pressures (on the sole of the foot), supporting previous Finite Element (FE) predictions. High pressures and large variations in pressure may relate to the development of foot pathology, which is a major concern in horses and elephants in a captive/domestic environment

    Ontogenetic scaling patterns and functional anatomy of the pelvic limb musculature in emus (Dromaius novaehollandiae)

    Get PDF
    Emus (Dromaius novaehollandiae) are exclusively terrestrial, bipedal and cursorial ratites with some similar biomechanical characteristics to humans. Their growth rates are impressive, as their body mass increases eighty-fold from hatching to adulthood whilst maintaining the same mode of locomotion throughout life. These ontogenetic characteristics stimulate biomechanical questions about the strategies that allow emus to cope with their rapid growth and locomotion, which can be partly addressed via scaling (allometric) analysis of morphology. In this study we have collected pelvic limb anatomical data (muscle architecture, tendon length, tendon mass and bone lengths) and calculated muscle physiological cross sectional area (PCSA) and average tendon cross sectional area from emus across three ontogenetic stages (n = 17, body masses from 3.6 to 42 kg). The data were analysed by reduced major axis regression to determine how these biomechanically relevant aspects of morphology scaled with body mass. Muscle mass and PCSA showed a marked trend towards positive allometry (26 and 27 out of 34 muscles respectively) and fascicle length showed a more mixed scaling pattern. The long tendons of the main digital flexors scaled with positive allometry for all characteristics whilst other tendons demonstrated a less clear scaling pattern. Finally, the two longer bones of the limb (tibiotarsus and tarsometatarsus) also exhibited positive allometry for length, and two others (femur and first phalanx of digit III) had trends towards isometry. These results indicate that emus experience a relative increase in their muscle force-generating capacities, as well as potentially increasing the force-sustaining capacities of their tendons, as they grow. Furthermore, we have clarified anatomical descriptions and provided illustrations of the pelvic limb muscle–tendon units in emus

    The state of OA: a large-scale analysis of the prevalence and impact of Open Access articles

    Get PDF
    Despite growing interest in Open Access (OA) to scholarly literature, there is an unmet need for large-scale, up-to-date, and reproducible studies assessing the prevalence and characteristics of OA. We address this need using oaDOI, an open online service that determines OA status for 67 million articles. We use three samples, each of 100,000 articles, to investigateOAin three populations: (1) all journal articles assigned a Crossref DOI, (2) recent journal articles indexed in Web of Science, and (3) articles viewed by users of Unpaywall, an open-source browser extension that lets users find OA articles using oaDOI. We estimate that at least 28% of the scholarly literature is OA (19M in total) and that this proportion is growing, driven particularly by growth in Gold and Hybrid. The most recent year analyzed (2015) also has the highest percentage of OA (45%). Because of this growth, and the fact that readers disproportionately access newer articles, we find that Unpaywall users encounter OA quite frequently: 47% of articles they view are OA. Notably, the most common mechanism for OA is not Gold, Green, or Hybrid OA, but rather an under-discussed category we dub Bronze: articles made freeto- read on the publisher website, without an explicit Open license. We also examine the citation impact of OA articles, corroborating the so-called open-access citation advantage: accounting for age and discipline, OA articles receive 18% more citations than average, an effect driven primarily by Green and Hybrid OA.Weencourage further research using the free oaDOI service, as a way to inform OA policy and practice

    Using crocodilian tails as models for dinosaur tails

    Get PDF
    The tails of extant crocodilians are anatomically the closest approximation of the tails of non-avian dinosaurs, and therefore a good starting point for any reconstruction of non-avian dinosaur tail muscles. However, we here demonstrate some methodological problems using crocodile tails, firstly regarding the general reconstruction of tail mobility from osteology, secondly for the reconstruction of tail musculature for the quantification of muscle forces, especially the m. caudofemoralis longus, and thirdly with respect to the anatomical differences between crocodilians and non-avian dinosaurs, especially in relation to the reconstruction of m. caudofemoralis brevis. Our results show that, given the current limited knowledge of crocodilian tails, volumetric reconstructions should be created on the basis of more gross morphological data than is usually used, and that biomechanical studies should include sensitivity analysis with greater parameter ranges than often applied.preprin

    Assessing the size of the affordability problem in scholarly publishing

    Get PDF
    For many decades, the hyperinflation of subscription prices for scholarly journals have concerned scholarly institutions. After years of fruitless efforts to solve this “serials crisis”, open access has been proposed as the latest potential solution. However, also the prices for open access publishing are high and are rising well beyond inflation. What has been missing from the public discussion so far is a quantitative approach to determine the actual costs of efficiently publishing a scholarly article using state-of-the-art technologies, such that informed decisions can be made as to appropriate price levels. Here we provide a granular, step-by-step calculation of the costs associated with publishing primary research articles, from submission, through peer-review, to publication, indexing and archiving. We find that these costs range from less than US200perarticleinmodern,largescalepublishingplatformsusingpostpublicationpeerreview,toaboutUS200 per article in modern, large scale publishing platforms using post-publication peer-review, to about US1,000 per article in prestigious journals with rejection rates exceeding 90%. The publication costs for a representative scholarly article today come to lie at around US$400. We discuss the additional non-publication items that make up the difference between publication costs and final price

    Head motion in children with ADHD during resting-state brain imaging

    Get PDF
    Although head motion during scanning has been largely considered to reflect simply technical artifacts, there is growing evidence showing that the variable of head motion reflects valuable information regarding individual’s psychological and/or clinical factors. Detailed studies would not only help to deal with the head motion biases, but they also help researchers in understanding the mental disorders. In this study, children with ADHD and demographically-matched typically developing control (TDC) participants underwent rs-fMRI examination without any specific task, and six mean single head motion parameters (three translational and three rotational) and a summary motion index for each participant were obtained. We found that patients with ADHD showed specific patterns of head motion during scanning: motion was significantly increased in the ADHD group, which was mainly contributed by the motion around and along the superior-to-inferior direction. Furthermore, the cross-validation classification analyses showed that the head motion could accurately distinguish children with ADHD from the healthy controls. These results suggest that head motion during scanning reflects useful information about the participants and accounting for head motion from MRI data may be helpful for ADHD diagnosing and treatment with neuroimaging

    Large Amplitude, Short Wave Peristalsis and Its Implications for Transport

    Get PDF
    Valveless, tubular pumps are widespread in the animal kingdom, but the mechanism by which these pumps generate fluid flow is often in dispute. Where the pumping mechanism of many organs was once described as peristalsis, other mechanisms, such as dynamic suction pumping, have been suggested as possible alternative mechanisms. Peristalsis is often evaluated using criteria established in a technical definition for mechanical pumps, but this definition is based on a small-amplitude, long-wave approximation which biological pumps often violate. In this study, we use a direct numerical simulation of large-amplitude, short-wave peristalsis to investigate the relationships between fluid flow, compression frequency, compression wave speed, and tube occlusion. We also explore how the flows produced differ from the criteria outlined in the technical definition of peristalsis. We find that many of the technical criteria are violated by our model: Fluid flow speeds produced by peristalsis are greater than the speeds of the compression wave; fluid flow is pulsatile; and flow speed have a nonlinear relationship with compression frequency when compression wave speed is held constant. We suggest that the technical definition is inappropriate for evaluating peristalsis as a pumping mechanism for biological pumps because they too frequently violate the assumptions inherent in these criteria. Instead, we recommend that a simpler, more inclusive definition be used for assessing peristalsis as a pumping mechanism based on the presence of non-stationary compression sites that propagate unidirectionally along a tube without the need for a structurally fixed flow direction

    NASA World Wind: virtual globe for an open smart city

    Get PDF
    In this article, firstly the open source framework NASA World Wind is introduced. NASA World Wind comes mainly with two versions. The Java version is well established in the market and has many customers. On the other hand the new version, which is the Web version, Web World Wind, is still at the dawn of development cycle, with many features implemented and already used in several applications, with a great future ahead. Following the introduction of NASA World Wind, the features available in the Web World Wind are listed and a short comparison with Cesium library is provided. Additionally, an application developed in the smart cities context with Web World Wind is described

    Oomycete Metabarcoding Reveals the Presence of Lagenidium spp. in Phytotelmata

    Get PDF
    The oomycete genus Lagenidium, which includes the mosquito biocontrol agent L. giganteum, is composed of animal pathogens, yet is phylogenetically closely related to the well characterized plant pathogens Phytophthora and Pythium spp. These phylogenetic affinities were further supported by the identification of canonical oomycete effectors in the L. giganteum transcriptome, and suggested, mirroring the endophytic abilities demonstrated in entomopathogenic fungi, that L. giganteum may have similarly retained capacities to establish interactions with plant tissues. To test this hypothesis, culture-independent, metabarcoding analyses aimed at detecting L. giganteum in bromeliad phytotelmata (a proven mosquito breeding ground) microbiomes were performed. Two independent and complementary microbial detection strategies based on the amplification of cox1 DNA barcodes were used and produced globally concordant outcomes revealing that two distinct Lagenidium phylotypes are present in phytotelmata. A total of 23,869 high quality reads were generated from four phytotelmata, with 52%, and 11.5%, corresponding to oomycetes, and Lagenidium spp., barcodes, respectively. Newly-designed Lagenidium-specific cox1 primers combined with cloning/Sanger sequencing produced only Lagenidium spp. barcodes, with a majority of sequences clustering with L. giganteum. High throughput sequencing based on a Single Molecule Real Time (SMRT) approach combined with broad range cox1 oomycete primers confirmed the presence of L. giganteum in phytotelmata, but indicated that a potentially novel Lagenidium phylotype (closely related to L. humanum) may represent one of the most prevalent oomycetes in these environments (along with Pythium spp.). Phylogenetic analyses demonstrated that all detected Lagenidium phylotype cox1 sequences clustered in a strongly-supported, monophyletic clade that included both L. giganteum and L. humanum. Therefore, Lagenidium spp. are present in phytotelmata microbiomes. This observation provides a basis to investigate potential relationships between Lagenidium spp. and phytotelma-forming plants, especially in the absence of water and/or invertebrate hosts, and reveals phytotelmata as sources for the identification of novel Lagenidium isolates with potential as biocontrol agents against vector mosquitoes
    corecore