14 research outputs found

    File management in a mobile DHT-based P2P environment

    Get PDF
    The emergence of mobile P2P systems is largely due to the evolution of mobile devices into powerful information processing units. The relatively structured context that results from the mapping of mobile patterns of behaviour onto P2P models is however constrained by the vulnerabilities of P2P networks and the inherent limitations of mobile devices. Whilst the implementation of P2P models gives rise to security and reliability issues, the deployment of mobile devices is subject to efficiency constraints. This paper presents the development and deployment of a mobile P2P system based on distributed hash tables (DHT). The secure, reliable and efficient dispersal of files is taken as an application. Reliability was addressed by providing two methods for file dispersal: replication and erasure coding. Security constraints were catered for by incorporating an authentication mechanism and three encryption schemes. Lightweight versions of various algorithms were selected in order to attend to efficiency requirements

    IF-MANET: Interoperable framework for heterogeneous mobile ad hoc networks

    Get PDF
    The advances in low power micro-processors, wireless networks and embedded systems have raised the need to utilize the significant resources of mobile devices. These devices for example, smart phones, tablets, laptops, wearables, and sensors are gaining enormous processing power, storage capacity and wireless bandwidth. In addition, the advancement in wireless mobile technology has created a new communication paradigm via which a wireless network can be created without any priori infrastructure called mobile ad hoc network (MANET). While progress is being made towards improving the efficiencies of mobile devices and reliability of wireless mobile networks, the mobile technology is continuously facing the challenges of un-predictable disconnections, dynamic mobility and the heterogeneity of routing protocols. Hence, the traditional wired, wireless routing protocols are not suitable for MANET due to its unique dynamic ad hoc nature. Due to the reason, the research community has developed and is busy developing protocols for routing in MANET to cope with the challenges of MANET. However, there are no single generic ad hoc routing protocols available so far, which can address all the basic challenges of MANET as mentioned before. Thus this diverse range of ever growing routing protocols has created barriers for mobile nodes of different MANET taxonomies to intercommunicate and hence wasting a huge amount of valuable resources. To provide interaction between heterogeneous MANETs, the routing protocols require conversion of packets, meta-model and their behavioural capabilities. Here, the fundamental challenge is to understand the packet level message format, meta-model and behaviour of different routing protocols, which are significantly different for different MANET Taxonomies. To overcome the above mentioned issues, this thesis proposes an Interoperable Framework for heterogeneous MANETs called IF-MANET. The framework hides the complexities of heterogeneous routing protocols and provides a homogeneous layer for seamless communication between these routing protocols. The framework creates a unique Ontology for MANET routing protocols and a Message Translator to semantically compare the packets and generates the missing fields using the rules defined in the Ontology. Hence, the translation between an existing as well as newly arriving routing protocols will be achieved dynamically and on-the-fly. To discover a route for the delivery of packets across heterogeneous MANET taxonomies, the IF-MANET creates a special Gateway node to provide cluster based inter-domain routing. The IF-MANET framework can be used to develop different middleware applications. For example: Mobile grid computing that could potentially utilise huge amounts of aggregated data collected from heterogeneous mobile devices. Disaster & crises management applications can be created to provide on-the-fly infrastructure-less emergency communication across organisations by utilising different MANET taxonomies

    Modeling, Designing, and Implementing an Ad-hoc M-Learning Platform that Integrates Sensory Data to Support Ubiquitous Learning

    Get PDF
    Learning at any-time, at anywhere, using any mobile computing platform learning (which we refer to as “education in your palm”) empowers informal and formal education. It supports the continued creation of knowledge outside a classroom, after-school programs, community-based organizations, museums, libraries, and shopping malls with under-resourced settings. In doing so, it fosters the continued creation of a cumulative body of knowledge in informal and formal education. Anytime, anywhere, using any device computing platform learning means that students are not required to attend traditional classroom settings in order to learn. Instead, students will be able to access and share learning resources from any mobile computing platform, such as smart phones, tablets using highly dynamic mobile and wireless ad-hoc networks. There has been little research on how to facilitate the integrated use of the service description, discovery and integration resources available in mobile and wireless ad-hoc networks including description schemas and mobile learning objects, and in particular as it relates to the consistency, availability, security and privacy of spatio-temporal and trajectory information. Another challenge is finding, combining and creating suitable learning modules to handle the inherent constraints of mobile learning, resource-poor mobile devices and ad-hoc networks. The aim of this research is to design, develop and implement the cutting edge context-aware and ubiquitous self-directed learning methodologies using ad-hoc and sensor networks. The emphasis of our work is on defining an appropriate mobile learning object and the service adaptation descriptions as well as providing mechanisms for ad-hoc service discovery and developing concepts for the seamless integration of the learning objects and their contents with a particular focus on preserving data and privacy. The research involves a combination of modeling, designing, and developing a mobile learning system in the absence of a networking infrastructure that integrates sensory data to support ubiquitous learning. The system includes mechanisms to allow content exchange among the mobile ad-hoc nodes to ensure consistency and availability of information. It also provides an on-the-fly content service discovery, query request, and retrieving data from mobile nodes and sensors

    Simulating a Post Disaster Scenario Through a Collaborative Peer-to-Peer App for Mobile Devices

    Get PDF
    In the wake of major disasters, the failure of existing communications infrastructure and the subsequent lack of an effective communication solution results in increased risk, inefficiencies, and damages to the people. One way to address this problem is to develop a distributed peer-to-peer system for mobile devices that relies on local communication such as Bluetooth technolog

    SEMAN - uma proposta de Middleware seguro para as redes ad hoc móveis

    Get PDF
    Orientador : Prof. Dr. Luiz Carlos Pessoa AlbiniTese (doutorado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em Ciência da Computação. Defesa: Curitiba, 04/04/2014Inclui referênciasResumo: Devido às particularidades das redes ad hoc móveis (MANETs - Mobile Ad Hoc Networks), como a topologia dinâmica, a ausência de infraestrutura e a sua característica decentralizada, a implementação de aplicações complexas e flexíveis para estas redes torna-se um desafio. Para permitir o desenvolvimento dessas aplicações, diversas soluções de middleware foram propostas. Contudo, as soluções encontradas não consideram plenamente os requisitos de segurança dessas redes. Este trabalho apresenta um estudo dos middlewares propostos para as MANETs, relatando o seu funcionamento e apresentando um comparativo das funcionalidades disponíveis. Esses middlewares são categorizados de acordo com a seguinte classificação, proposta neste trabalho: baseados em espaços de tuplas, baseados em P2P, baseados em contexto, cross-layer e orientados à aplicação. Em seguida, com base nas limitações estudadas, é proposto um novo middleware de segurança para as MANETs, chamado de SEcure Middleware for Ad hoc Mobile Networks (SEMAN - Middleware seguro para as redes ad hoc móveis), que fornece um conjunto de serviços de segurança para facilitar o desenvolvimento de aplicações distribuídas, complexas e flexíveis. Para fornecer tais serviços e garantir a segurança, o SEMAN considera o contexto das aplicações e organiza os nós em grupos, também baseados nesses contextos. O middleware prevê três módulos: serviço, processamento e segurança. O módulo de serviço é responsável por manter todos os serviços e aplicações que são disponibilizados pelo nó hospedeiro a outros nós da rede. O módulo de processamento é responsável por manter o funcionamento central do middleware, atendendo os pedidos e gerenciando o registro dos serviços e componentes disponíveis. O módulo de segurança é o ponto principal do middleware e o foco desta tese. Ele possui os componentes de gerenciamento de chaves, de confiança e de grupos. Todos esses componentes foram desenvolvidos pelo autor e são descritos neste trabalho. Eles são suportados por um núcleo de operações criptográficas e atuam de acordo com regras e políticas de segurança. A integração desses componentes fornece garantias de segurança contra ataques às aplicações que utilizam o middleware.Abstract: Due to the particularities of Mobile Ad Hoc Networks (MANETs), as their dynamic topology, lack of infrastructure and decentralized characteristic, the implementation of complex and flexible applications is a challenge. To enable the deployment of these applications, several middleware solutions were proposed. However, these solutions do not completely consider the security requirements of these networks. This thesis presents middleware solutions for MANETs, by describing their operations and presenting a comparative of the available functionalities. The middlewares were grouped according to this classification: tuple space-based, P2P-based, context-based, cross-layer and applicationoriented. Then, based on the limitations of the studied solutions, a new secure middleware is proposed, called SEcure Middleware for Ad hoc Networks (SEMAN), which provides a set of basic and secure services to MANETs aiming to facilitate the development of distributed, complex and flexible applications. To provide such services and ensure security to the applications, SEMAN considers the context of applications and organizes nodes into groups, also based on these contexts. The middleware includes three modules: service, processing, and security. Service module is responsible for maintaining all services and applications hosted by nodes. The processing module is responsible for maintaining the middleware core operation, listening the requests and managing the registry of available services and components. The security module is the main part of the middleware and the focus of this thesis. It has the following components: key management, trust management and group management. All these components were developed and are described in this work. They are supported by a cryptographic core and behave according to security rules and policies. The integration of these components provides security assurance against attacks to the applications that use the middleware

    Distributed Data Management in Vehicular Networks Using Mobile Agents

    Get PDF
    En los últimos años, las tecnologías de la información y las comunicaciones se han incorporado al mundo de la automoción gracias a sus avances, y han permitido la creación de dispositivos cada vez más pequeños y potentes. De esta forma, los vehículos pueden ahora incorporar por un precio asequible equipos informáticos y de comunicaciones.En este escenario, los vehículos que circulan por una determinada zona (como una ciudad o una autopista) pueden comunicarse entre ellos usando dispositivos inalámbricos que les permiten intercambiar información con otros vehículos cercanos, formando así una red vehicular ad hoc, o VANET (Vehicular Ad hoc Network). En este tipo de redes, las comunicaciones se establecen con conexiones punto a punto por medio de dispositivos tipo Wi-Fi, que permiten la comunicación con otros del mismo tipo dentro de su alcance, sin que sea necesaria la existencia previa de una infraestructura de comunicaciones como ocurre con las tecnologías de telefonía móvil (como 3G/4G), que además requieren de una suscripción y el pago de una tarifa para poder usarlas.Cada vehículo puede enviar información y recibirla de diversos orígenes, como el propio vehículo (por medio de los sensores que lleva incorporados), otros vehículos que se encuentran cerca, así como de la infraestructura de tráfico presente en las carreteras (como semáforos, señales, paneles electrónicos de información, cámaras de vigilancia, etc.). Todos estas fuentes pueden transmitir datos de diversa índole, como información de interés para los conductores (por ejemplo, atascos de tráfico o accidentes en la vía), o de cualquier otro tipo, mientras sea posible digitalizarla y enviarla a través de una red.Todos esos datos pueden ser almacenados localmente en los ordenadores que llevan los vehículos a medida que son recibidos, y sería muy interesante poder sacarles partido por medio de alguna aplicación que los explotara. Por ejemplo, podrían utilizarse los vehículos como plataformas móviles de sensores que obtengan datos de los lugares por los que viajan. Otro ejemplo de aplicación sería la de ayudar a encontrar plazas de aparcamiento libres en una zona de una ciudad, usando la información que suministrarían los vehículos que dejan una plaza libre.Con este fin, en esta tesis se ha desarrollado una propuesta de la gestión de datos basada en el uso de agentes móviles para poder hacer uso de la información presente en una VANET de forma eficiente y flexible. Esta no es una tarea trivial, ya que los datos se encuentran dispersos entre los vehículos que forman la red, y dichos vehículos están constantemente moviéndose y cambiando de posición. Esto hace que las conexiones de red establecidas entre ellos sean inestables y de corta duración, ya que están constantemente creándose y destruyéndose a medida que los vehículos entran y salen del alcance de sus comunicaciones debido a sus movimientos.En un escenario tan complicado, la aproximación que proponemos permite que los datos sean localizados, y que se puedan hacer consultas sobre ellos y transmitirlos de un sitio cualquiera de la VANET a otro, usando estrategias multi-salto que se adaptan a las siempre cambiantes posiciones de los vehículos. Esto es posible gracias a la utilización de agentes móviles para el procesamiento de datos, ya que cuentan con una serie de propiedades (como su movilidad, autonomía, adaptabilidad, o inteligencia), que hace que sean una elección muy apropiada para este tipo de entorno móvil y con un elevado grado de incertidumbre.La solución propuesta ha sido extensamente evaluada y probada por medio de simulaciones, que demuestran su buen rendimiento y fiabilidad en redes vehiculares con diferentes condiciones y en diversos escenarios.<br /

    Context-Aware Recommendation Systems in Mobile Environments

    Get PDF
    Nowadays, the huge amount of information available may easily overwhelm users when they need to take a decision that involves choosing among several options. As a solution to this problem, Recommendation Systems (RS) have emerged to offer relevant items to users. The main goal of these systems is to recommend certain items based on user preferences. Unfortunately, traditional recommendation systems do not consider the user’s context as an important dimension to ensure high-quality recommendations. Motivated by the need to incorporate contextual information during the recommendation process, Context-Aware Recommendation Systems (CARS) have emerged. However, these recent recommendation systems are not designed with mobile users in mind, where the context and the movements of the users and items may be important factors to consider when deciding which items should be recommended. Therefore, context-aware recommendation models should be able to effectively and efficiently exploit the dynamic context of the mobile user in order to offer her/him suitable recommendations and keep them up-to-date.The research area of this thesis belongs to the fields of context-aware recommendation systems and mobile computing. We focus on the following scientific problem: how could we facilitate the development of context-aware recommendation systems in mobile environments to provide users with relevant recommendations? This work is motivated by the lack of generic and flexible context-aware recommendation frameworks that consider aspects related to mobile users and mobile computing. In order to solve the identified problem, we pursue the following general goal: the design and implementation of a context-aware recommendation framework for mobile computing environments that facilitates the development of context-aware recommendation applications for mobile users. In the thesis, we contribute to bridge the gap not only between recommendation systems and context-aware computing, but also between CARS and mobile computing.<br /

    Investigation of data dissemination techniques for opportunistic networks

    Get PDF
    An opportunistic network is an infrastructure-less peer to peer network, created between devices that are mobile and wireless enabled. The links between devices are dynamic and often short-lived. Therefore, disseminating data from a source to recipients with a quality of service guarantee and efficiency is a very challenging problem. Furthermore, the interactions between devices are based on opportunity and are dependent on the devices mobility, which have extreme diverse patterns. The aim of this thesis is to investigate dissemination of data in opportunistic networks. In particular two conflicting objectives are studied: minimising the overhead costs and maximising the information coverage over time. We also take into account the effects of mobility. Extensive computer simulation is developed to explore models for information dissemination and mobility. On top of existing mobility models (i.e. Random Walk, Random, Waypoint and Gauss Markov) a hybrid model is derived from the Random Waypoint and Gauss Markov mobility models. The effect on mobility model on dissemination performance is found to be highly significant. This is based on sensitivity analysis on mobility and node density. We first consider different baseline push techniques for data dissemination. We propose four different push techniques, namely Pure Push, Greedy, L-Push and Spray and Relay to analyse the impact of different push techniques to the information dissemination performances. The results present different trade-offs between objectives. As a strategy to manage overheads, we consider controlling to which nodes information is pushed to by establishing a social network between devices. A logical social network can be built between mobile devices if they repeatedly see each other, and can be defined in different ways. This is important because it shows how content may potentially flow to devices. We explore the effects of mobility for different definitions of the social network. This shows how different local criteria for defining links in a social network lead to different social structures. Finally we consider the effect of combining the social structure and intelligent push techniques to further improve the data dissemination performance in opportunistic networks. We discover that prioritising pushing over a social network is able to minimise the overhead costs but it introduces a dissemination delay.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore