233,887 research outputs found

    Design and implementation of locality-aware P2P system

    Get PDF
    One of the most relevant problem for an Internet Service Provider is the large bandwidth usage on international links, mainly due to peer-to-peer applications adopted for file-sharing. The Collaborative Locality-aware Overlay SERvice (CLOSER) technology has been recently proposed to solve this issue by properly modifying the behavior of peer-to-peer application. The technology is also covered in two recent patent applications. This paper presents possible design guidelines to actually implement CLOSER in a DHT-based peer-to-peer system and describe a real implementation based on the popular aMule applicatio

    Peer-to-Peer Secure Multi-Party Numerical Computation Facing Malicious Adversaries

    Full text link
    We propose an efficient framework for enabling secure multi-party numerical computations in a Peer-to-Peer network. This problem arises in a range of applications such as collaborative filtering, distributed computation of trust and reputation, monitoring and other tasks, where the computing nodes is expected to preserve the privacy of their inputs while performing a joint computation of a certain function. Although there is a rich literature in the field of distributed systems security concerning secure multi-party computation, in practice it is hard to deploy those methods in very large scale Peer-to-Peer networks. In this work, we try to bridge the gap between theoretical algorithms in the security domain, and a practical Peer-to-Peer deployment. We consider two security models. The first is the semi-honest model where peers correctly follow the protocol, but try to reveal private information. We provide three possible schemes for secure multi-party numerical computation for this model and identify a single light-weight scheme which outperforms the others. Using extensive simulation results over real Internet topologies, we demonstrate that our scheme is scalable to very large networks, with up to millions of nodes. The second model we consider is the malicious peers model, where peers can behave arbitrarily, deliberately trying to affect the results of the computation as well as compromising the privacy of other peers. For this model we provide a fourth scheme to defend the execution of the computation against the malicious peers. The proposed scheme has a higher complexity relative to the semi-honest model. Overall, we provide the Peer-to-Peer network designer a set of tools to choose from, based on the desired level of security.Comment: Submitted to Peer-to-Peer Networking and Applications Journal (PPNA) 200

    JXTA-Overlay: a P2P platform for distributed, collaborative, and ubiquitous computing

    Get PDF
    With the fast growth of the Internet infrastructure and the use of large-scale complex applications in industries, transport, logistics, government, health, and businesses, there is an increasing need to design and deploy multifeatured networking applications. Important features of such applications include the capability to be self-organized, be decentralized, integrate different types of resources (personal computers, laptops, and mobile and sensor devices), and provide global, transparent, and secure access to resources. Moreover, such applications should support not only traditional forms of reliable distributing computing and optimization of resources but also various forms of collaborative activities, such as business, online learning, and social networks in an intelligent and secure environment. In this paper, we present the Juxtapose (JXTA)-Overlay, which is a JXTA-based peer-to-peer (P2P) platform designed with the aim to leverage capabilities of Java, JXTA, and P2P technologies to support distributed and collaborative systems. The platform can be used not only for efficient and reliable distributed computing but also for collaborative activities and ubiquitous computing by integrating in the platform end devices. The design of a user interface as well as security issues are also tackled. We evaluate the proposed system by experimental study and show its usefulness for massive processing computations and e-learning applications.Peer ReviewedPostprint (author's final draft

    Scalable Proxy Architecture for Mobile and Peer-to-Peer Networks

    Get PDF
    The growth of wireless telecommunications has stipulated the interest for anywhere-anytime computing. The synergy between networking and mobility will engender new collaborative applications with mobile devices on heterogeneous platforms. One such middleware is “SYSTEM ON MOBILE DEVICES”, SYD developed by the Yamacraw Embedded Systems research team. This type of middleware is an opening step towards Peer-to-Peer mobile networks. This project envisioned collaborative applications among mobile devices and PDAs were used as servers. This thesis studies various existing architectures in mobile computing and their scalability issues. We also proposed new scalable flexible thick client proxy system FTCPS, an architecture suitable for mobile Peer-to-Peer networks. Our empirical study showed that FTCPS has low response time compared to other architectures

    A Collaborative Software Infrastructure based on the High Level Architecture and XML

    Get PDF
    A study is made of using the High Level Architecture (HLA) as foundation for distributed applications in the domain of Computer-Supported Collaborative Work. A plug-in, peer-to-peer infrastructure for such applications is proposed, aimed at facilitating development and management of collaborative software. Users of the framework collaborate in groups and sessions, described by a replicated state XML information model. A prototype infrastructure is developed, along with three prototype collaborative applications. Results of performance testing show that a transport system built on HLA compares reasonably well with a socket-based transport system. On the whole, results demonstrate feasibility of the infrastructure and of the objective of extending the HLA to non-simulation applications. Future work to adapt full-scale applications to the collaborative infrastructure is invited

    A platform for P2P agent-based collaborative applications

    Get PDF
    The operational environment can be a valuable source of information about the behavior of software applications and their usage context. Although a single instance of an application has limited evidence of the range of the possible behaviors and situations that might be experienced in the field, the collective knowledge composed by the evidence gathered by the many instances of a same application running in several diverse user environments (eg, a browser) might be an invaluable source of information. This information can be exploited by applications able to autonomously analyze how they behave in the field and adjust their behavior accordingly. Augmenting applications with the capability to collaborate and directly share information about their behavior is challenging because it requires the definition of a fully decentralized and dependable networked infrastructure whose nodes are the user machines. The nodes of the infrastructure must be collaborative, to share information, and autonomous, to exploit the available information to change their behavior, for instance, to better accommodate the needs of the users to prevent known problems. This paper describes the initial results that we obtained with the design and the development of an infrastructure that can enable the execution of collaborative scenarios in a fully decentralized way. Our idea is to combine the agent-based paradigm, which is well suited to design collaborative and autonomous nodes, and the peer-to-peer paradigm, which is well suited to design distributed and dynamic network infrastructures. To demonstrate our idea, we augmented the popular JADE agent-based platform with a software layer that supports both the creation of a fully decentralized peer-to-peer network of JADE platforms and the execution of services within that network, thus enabling JADE multiagent systems (MASs) to behave as peer-to-peer networks. The resulting platform can be used to study the design of collaborative applications running in the field

    Sybil attacks against mobile users: friends and foes to the rescue

    Get PDF
    Collaborative applications for co-located mobile users can be severely disrupted by a sybil attack to the point of being unusable. Existing decentralized defences have largely been designed for peer-to-peer networks but not for mobile networks. That is why we propose a new decentralized defence for portable devices and call it MobID. The idea is that a device manages two small networks in which it stores information about the devices it meets: its network of friends contains honest devices, and its network of foes contains suspicious devices. By reasoning on these two networks, the device is then able to determine whether an unknown individual is carrying out a sybil attack or not. We evaluate the extent to which MobID reduces the number of interactions with sybil attackers and consequently enables collaborative applications.We do so using real mobility and social network data. We also assess computational and communication costs of MobID on mobile phones

    Peer-to-Peer Secure Multi-Party Numerical Computation

    Full text link
    We propose an efficient framework for enabling secure multi-party numerical computations in a Peer-to-Peer network. This problem arises in a range of applications such as collaborative filtering, distributed computation of trust and reputation, monitoring and numerous other tasks, where the computing nodes would like to preserve the privacy of their inputs while performing a joint computation of a certain function. Although there is a rich literature in the field of distributed systems security concerning secure multi-party computation, in practice it is hard to deploy those methods in very large scale Peer-to-Peer networks. In this work, we examine several possible approaches and discuss their feasibility. Among the possible approaches, we identify a single approach which is both scalable and theoretically secure. An additional novel contribution is that we show how to compute the neighborhood based collaborative filtering, a state-of-the-art collaborative filtering algorithm, winner of the Netflix progress prize of the year 2007. Our solution computes this algorithm in a Peer-to-Peer network, using a privacy preserving computation, without loss of accuracy. Using extensive large scale simulations on top of real Internet topologies, we demonstrate the applicability of our approach. As far as we know, we are the first to implement such a large scale secure multi-party simulation of networks of millions of nodes and hundreds of millions of edges.Comment: 10 pages, 2 figures, appeared in the 8th IEEE Peer-to-Peer Computing, Aachen, Germany, Sept. 200

    Business education and the development of feedback skills: The impact of student peer review assignments.

    Get PDF
    Business education not only strives to bridge the gap between related theories and applications but also seeks to develop student’s employability skills. Employability skills are generic skill sets of employees and potential employees that employers across industries value. Leadership, communications, and relationship building are examples of skills that employers have reported as valuable employability skills. Feedback receiving and giving are communications skills important for employment and professional development. The purpose of this paper is to explore the pedagogical device of peer reviews in business classes to develop students’ feedback receiving and feedback giving skills. Using the theoretical learning theory, connectivisim, we propose that course-related peer-review assignments due to their collaborative nature improve feedback skills. From the literature, we developed a conceptual model related to collaborative coursework such as peer review assignments in business courses. We also present some best practices for leveraging course-specific peer-review assignments to enhance students’ feedback skills

    Context aware programmable trackers for the next generation Internet

    Get PDF
    This work introduces and proposes the concept of context aware programmable trackers for the next generation Internet. The pro- posed solution gives ground for the development of advanced applications based on the P2P paradigm and will foster collaborative efforts among several network entities (e.g. P2P applications and ISPs). The proposed concept of context aware programmable trackers allows that several peer selection strategies might be supported by a P2P tracker entity able to improve the peer selection decisions according with pre-defined objectives and external inputs provided by specific services. The flexible, adaptive and enhanced peer selection semantics that might be achieved by the proposed solution will contribute for devising novel P2P based services and business models for the future Internet
    corecore