57,581 research outputs found

    Advances in infrastructures and tools for multiagent systems

    Full text link
    In the last few years, information system technologies have focused on solving challenges in order to develop distributed applications. Distributed systems can be viewed as collections of service-provider and ser vice-consumer components interlinked by dynamically defined workflows (Luck and McBurney 2008).Alberola Oltra, JM.; Botti Navarro, VJ.; Such Aparicio, JM. (2014). Advances in infrastructures and tools for multiagent systems. Information Systems Frontiers. 16:163-167. doi:10.1007/s10796-014-9493-6S16316716Alberola, J. M., BĂșrdalo, L., JuliĂĄn, V., Terrasa, A., & GarcĂ­a-Fornes, A. (2014). An adaptive framework for monitoring agent organizations. Information Systems Frontiers, 16(2). doi: 10.1007/s10796-013-9478-x .Alfonso, B., Botti, V., Garrido, A., & Giret, A. (2014). A MAS-based infrastructure for negotiation and its application to a water-right market. Information Systems Frontiers, 16(2). doi: 10.1007/s10796-013-9443-8 .Andrighetto, G., Castelfranchi, C., Mayor, E., McBreen, J., LĂłpez-SĂĄnchez, M., & Parsons, S. (2013). (Social) norm dynamics. In G. Andrighetto, G. Governatori, P. Noriega, & L. W. van der Torre (Eds.), Normative multi-agent systems (pp. 135–170). Dagstuhl: Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik.Baarslag, T., Fujita, K., Gerding, E. H., Hindriks, K., Ito, T., Jennings, N. R., et al. (2013). Evaluating practical negotiating agents: results and analysis of the 2011 international competition. Artificial Intelligence, 198, 73–103.Boissier, O., Bordini, R. H., HĂŒbner, J. F., Ricci, A., & Santi, A. (2013). Multi-agent oriented programming with JaCaMo. Science of Computer Programming, 78(6), 747–761.Campos, J., Esteva, M., LĂłpez-SĂĄnchez, M., Morales, J., & SalamĂł, M. (2011). Organisational adaptation of multi-agent systems in a peer-to-peer scenario. Computing, 91(2), 169–215.Carrera, A., Iglesias, C. A., & Garijo, M. (2014). Beast methodology: an agile testing methodology for multi-agent systems based on behaviour driven development. Information Systems Frontiers, 16(2). doi: 10.1007/s10796-013-9438-5 .Criado, N., Such, J. M., & Botti, V. (2014). Norm reasoning services. Information Systems Frontiers, 16(2). doi: 10.1007/s10796-013-9444-7 .Del Val, E., Rebollo, M., & Botti, V. (2014). Enhancing decentralized service discovery in open service-oriented multi-agent systems. Journal of Autonomous Agents and Multi-Agent Systems, 28(1), 1–30.Denti, E., Omicini, A., & Ricci, A. (2002). Coordination tools for MAS development and deployment. Applied Artificial Intelligence, 16(9–10), 721–752.Dignum, V., & Dignum, F. (2012). A logic of agent organizations. Logic Journal of IGPL, 20(1), 283–316.Ferber, J., & Gutknecht, O. (1998). A meta-model for the analysis and design of organizations in multi-agent systems. In Multi agent systems. Proceedings. International Conference on (pp. 128–135). IEEE.FoguĂ©s, R. L., Such, J. M., Espinosa, A., & Garcia-Fornes, A. (2014). BFF: a tool for eliciting tie strength and user communities in social networking services. Information Systems Frontiers, 16(2). doi: 10.1007/s10796-013-9453-6 .Garcia, E., Giret, A., & Botti, V. (2011). Evaluating software engineering techniques for developing complex systems with multiagent approaches. Information and Software Technology, 53(5), 494–506.Garcia-Fornes, A., HĂŒbner, J., Omicini, A., Rodriguez-Aguilar, J., & Botti, V. (2011). Infrastructures and tools for multiagent systems for the new generation of distributed systems. Engineering Applications of Articial Intelligence, 24(7), 1095–1097.Jennings, N., Faratin, P., Lomuscio, A., Parsons, S., Sierra, C., & Wooldridge, M. (2001). Automated negotiation: prospects, methods and challenges. International Journal of Group Decision and Negotiation, 10(2), 199–215.Jung, Y., Kim, M., Masoumzadeh, A., & Joshi, J. B. (2012). A survey of security issue in multi-agent systems. Artificial Intelligence Review, 37(3), 239–260.Kota, R., Gibbins, N., & Jennings, N. R. (2012). Decentralized approaches for self-adaptation in agent organizations. ACM Transactions on Autonomous and Adaptive Systems (TAAS), 7(1), 1.Kraus, S. (1997). Negotiation and cooperation in multi-agent environments. Artificial Intelligence, 94(1), 79–97.Lin, Y. I., Chou, Y. W., Shiau, J. Y., & Chu, C. H. (2013). Multi-agent negotiation based on price schedules algorithm for distributed collaborative design. Journal of Intelligent Manufacturing, 24(3), 545–557.Luck, M., & McBurney, P. (2008). Computing as interaction: agent and agreement technologies.Luck, M., McBurney, P., Shehory, O., & Willmott, S. (2005). Agent technology: Computing as interaction (A roadmap for agent based computing). AgentLink.Ossowski, S., & Menezes, R. (2006). On coordination and its significance to distributed and multiagent systems. Concurrency and Computation: Practice and Experience, 18(4), 359–370.Ossowski, S., Sierra, C., & Botti. (2013). Agreement technologies: A computing perspective. In Agreement Technologies (pp. 3–16). Springer Netherlands.Pinyol, I., & Sabater-Mir, J. (2013). Computational trust and reputation models for open multi-agent systems: a review. Artificial Intelligence Review, 40(1), 1–25.Ricci, A., Piunti, M., & Viroli, M. (2011). Environment programming in multi-agent systems: an artifact-based perspective. Autonomous Agents and Multi-Agent Systems, 23(2), 158–192.Sierra, C., & Debenham, J. (2006). Trust and honour in information-based agency. In Proceedings of the 5th international conference on autonomous agents and multi agent systems, (p. 1225–1232). New York: ACM.Sierra, C., Botti, V., & Ossowski, S. (2011). Agreement computing. KI-Knstliche Intelligenz, 25(1), 57–61.Vasconcelos, W., GarcĂ­a-Camino, A., Gaertner, D., RodrĂ­guez-Aguilar, J. A., & Noriega, P. (2012). Distributed norm management for multi-agent systems. Expert Systems with Applications, 39(5), 5990–5999.Wooldridge, M. (2002). An introduction to multiagent systems. New York: Wiley.Wooldridge, M., & Jennings, N. R. (1995). Intelligent agents: theory and practice. Knowledge Engineering Review, 10(2), 115–152

    Digital Ecosystems: Ecosystem-Oriented Architectures

    Full text link
    We view Digital Ecosystems to be the digital counterparts of biological ecosystems. Here, we are concerned with the creation of these Digital Ecosystems, exploiting the self-organising properties of biological ecosystems to evolve high-level software applications. Therefore, we created the Digital Ecosystem, a novel optimisation technique inspired by biological ecosystems, where the optimisation works at two levels: a first optimisation, migration of agents which are distributed in a decentralised peer-to-peer network, operating continuously in time; this process feeds a second optimisation based on evolutionary computing that operates locally on single peers and is aimed at finding solutions to satisfy locally relevant constraints. The Digital Ecosystem was then measured experimentally through simulations, with measures originating from theoretical ecology, evaluating its likeness to biological ecosystems. This included its responsiveness to requests for applications from the user base, as a measure of the ecological succession (ecosystem maturity). Overall, we have advanced the understanding of Digital Ecosystems, creating Ecosystem-Oriented Architectures where the word ecosystem is more than just a metaphor.Comment: 39 pages, 26 figures, journa

    Blockchain Solutions for Multi-Agent Robotic Systems: Related Work and Open Questions

    Full text link
    The possibilities of decentralization and immutability make blockchain probably one of the most breakthrough and promising technological innovations in recent years. This paper presents an overview, analysis, and classification of possible blockchain solutions for practical tasks facing multi-agent robotic systems. The paper discusses blockchain-based applications that demonstrate how distributed ledger can be used to extend the existing number of research platforms and libraries for multi-agent robotic systems.Comment: 5 pages, FRUCT-2019 conference pape

    OpenKnowledge at work: exploring centralized and decentralized information gathering in emergency contexts

    Get PDF
    Real-world experience teaches us that to manage emergencies, efficient crisis response coordination is crucial; ICT infrastructures are effective in supporting the people involved in such contexts, by supporting effective ways of interaction. They also should provide innovative means of communication and information management. At present, centralized architectures are mostly used for this purpose; however, alternative infrastructures based on the use of distributed information sources, are currently being explored, studied and analyzed. This paper aims at investigating the capability of a novel approach (developed within the European project OpenKnowledge1) to support centralized as well as decentralized architectures for information gathering. For this purpose we developed an agent-based e-Response simulation environment fully integrated with the OpenKnowledge infrastructure and through which existing emergency plans are modelled and simulated. Preliminary results show the OpenKnowledge capability of supporting the two afore-mentioned architectures and, under ideal assumptions, a comparable performance in both cases

    Organisational Abstractions for the Analysis and Design of Multi-Agent Systems

    No full text
    The architecture of a multi-agent system can naturally be viewed as a computational organisation. For this reason, we believe organisational abstractions should play a central role in the analysis and design of such systems. To this end, the concepts of agent roles and role models are increasingly being used to specify and design multi-agent systems. However, this is not the full picture. In this paper we introduce three additional organisational concepts - organisational rules, organisational structures, and organisational patterns - that we believe are necessary for the complete specification of computational organisations. We view the introduction of these concepts as a step towards a comprehensive methodology for agent-oriented systems

    Analysis of current middleware used in peer-to-peer and grid implementations for enhancement by catallactic mechanisms

    Get PDF
    This deliverable describes the work done in task 3.1, Middleware analysis: Analysis of current middleware used in peer-to-peer and grid implementations for enhancement by catallactic mechanisms from work package 3, Middleware Implementation. The document is divided in four parts: The introduction with application scenarios and middleware requirements, Catnets middleware architecture, evaluation of existing middleware toolkits, and conclusions. -- Die Arbeit definiert Anforderungen an Grid und Peer-to-Peer Middleware Architekturen und analysiert diese auf ihre Eignung fĂŒr die prototypische Umsetzung der Katallaxie. Eine Middleware-Architektur fĂŒr die Umsetzung der Katallaxie in Application Layer Netzwerken wird vorgestellt.Grid Computing

    Proof-of-Concept Application - Annual Report Year 1

    Get PDF
    In this document the Cat-COVITE Application for use in the CATNETS Project is introduced and motivated. Furthermore an introduction to the catallactic middleware and Web Services Agreement (WS-Agreement) concepts is given as a basis for the future work. Requirements for the application of Cat-COVITE with in catallactic systems are analysed. Finally the integration of the Cat-COVITE application and the catallactic middleware is described. --Grid Computing
    • 

    corecore