4,512 research outputs found

    A novel mechanism for anonymizing Global System for Mobile Communications calls using a resource-based Session Initiation Protocol community network

    Get PDF
    Considering the widespread adoption of smartphones in mobile communications and the well-established resource sharing use in the networking community, we present a novel mechanism to achieve anonymity in the Global System for Mobile Communications (GSM). We propose a Voice over Internet Protocol infrastructure using the Session Initiation Protocol (SIP) where a smartphone registers on a SIP registrar and can start GSM conversation through another smartphone acting as a GSM gateway, by using a SIP intermediate without an extra cost. The testbed that we developed for empirical evaluation revealed no significant quality of service degradation

    An interoperable and secure architecture for internet-scale decentralized personal communication

    Get PDF
    Interpersonal network communications, including Voice over IP (VoIP) and Instant Messaging (IM), are increasingly popular communications tools. However, systems to date have generally adopted a client-server model, requiring complex centralized infrastructure, or have not adhered to any VoIP or IM standard. Many deployment scenarios either require no central equipment, or due to unique properties of the deployment, are limited or rendered unattractive by central servers. to address these scenarios, we present a solution based on the Session Initiation Protocol (SIP) standard, utilizing a decentralized Peer-to-Peer (P2P) mechanism to distribute data. Our new approach, P2PSIP, enables users to communicate with minimal or no centralized servers, while providing secure, real-time, authenticated communications comparable in security and performance to centralized solutions.;We present two complete protocol descriptions and system designs. The first, the SOSIMPLE/dSIP protocol, is a P2P-over-SIP solution, utilizing SIP both for the transport of P2P messages and personal communications, yielding an interoperable, single-stack solution for P2P communications. The RELOAD protocol is a binary P2P protocol, designed for use in a SIP-using-P2P architecture where an existing SIP application is modified to use an additional, binary RELOAD stack to distribute user information without need for a central server.;To meet the unique security needs of a fully decentralized communications system, we propose an enrollment-time certificate authority model that provides asserted identity and strong P2P and user-level security. In this model, a centralized server is contacted only at enrollment time. No run-time connections to the servers are required.;Additionally, we show that traditional P2P message routing mechanisms are inappropriate for P2PSIP. The existing mechanisms are generally optimized for file sharing and neglect critical practical elements of the open Internet --- namely link-level security and asymmetric connectivity caused by Network Address Translators (NATs). In response to these shortcomings, we introduce a new message routing paradigm, Adaptive Routing (AR), and using both analytical models and simulation show that AR significantly improves message routing performance for P2PSIP systems.;Our work has led to the creation of a new research topic within the P2P and interpersonal communications communities, P2PSIP. Our seminal publications have provided the impetus for subsequent P2PSIP publications, for the listing of P2PSIP as a topic in conference calls for papers, and for the formation of a new working group in the Internet Engineering Task Force (IETF), directed to develop an open Internet standard for P2PSIP

    Security in peer-to-peer communication systems

    Get PDF
    P2PSIP (Peer-to-Peer Session Initiation Protocol) is a protocol developed by the IETF (Internet Engineering Task Force) for the establishment, completion and modiÂżcation of communication sessions that emerges as a complement to SIP (Session Initiation Protocol) in environments where the original SIP protocol may fail for technical, Âżnancial, security, or social reasons. In order to do so, P2PSIP systems replace all the architecture of servers of the original SIP systems used for the registration and location of users, by a structured P2P network that distributes these functions among all the user agents that are part of the system. This new architecture, as with any emerging system, presents a completely new security problematic which analysis, subject of this thesis, is of crucial importance for its secure development and future standardization. Starting with a study of the state of the art in network security and continuing with more speciÂżc systems such as SIP and P2P, we identify the most important security services within the architecture of a P2PSIP communication system: access control, bootstrap, routing, storage and communication. Once the security services have been identiÂżed, we conduct an analysis of the attacks that can aÂżect each of them, as well as a study of the existing countermeasures that can be used to prevent or mitigate these attacks. Based on the presented attacks and the weaknesses found in the existing measures to prevent them, we design speciÂżc solutions to improve the security of P2PSIP communication systems. To this end, we focus on the service that stands as the cornerstone of P2PSIP communication systemsÂż security: access control. Among the new designed solutions stand out: a certiÂżcation model based on the segregation of the identity of users and nodes, a model for secure access control for on-the-Âży P2PSIP systems and an authorization framework for P2PSIP systems built on the recently published Internet Attribute CertiÂżcate ProÂżle for Authorization. Finally, based on the existing measures and the new solutions designed, we deÂżne a set of security recommendations that should be considered for the design, implementation and maintenance of P2PSIP communication systems.Postprint (published version

    Service composition based on SIP peer-to-peer networks

    Get PDF
    Today the telecommunication market is faced with the situation that customers are requesting for new telecommunication services, especially value added services. The concept of Next Generation Networks (NGN) seems to be a solution for this, so this concept finds its way into the telecommunication area. These customer expectations have emerged in the context of NGN and the associated migration of the telecommunication networks from traditional circuit-switched towards packet-switched networks. One fundamental aspect of the NGN concept is to outsource the intelligence of services from the switching plane onto separated Service Delivery Platforms using SIP (Session Initiation Protocol) to provide the required signalling functionality. Caused by this migration process towards NGN SIP has appeared as the major signalling protocol for IP (Internet Protocol) based NGN. This will lead in contrast to ISDN (Integrated Services Digital Network) and IN (Intelligent Network) to significantly lower dependences among the network and services and enables to implement new services much easier and faster. In addition, further concepts from the IT (Information Technology) namely SOA (Service-Oriented Architecture) have largely influenced the telecommunication sector forced by amalgamation of IT and telecommunications. The benefit of applying SOA in telecommunication services is the acceleration of service creation and delivery. Main features of the SOA are that services are reusable, discoverable combinable and independently accessible from any location. Integration of those features offers a broader flexibility and efficiency for varying demands on services. This thesis proposes a novel framework for service provisioning and composition in SIP-based peer-to-peer networks applying the principles of SOA. One key contribution of the framework is the approach to enable the provisioning and composition of services which is performed by applying SIP. Based on this, the framework provides a flexible and fast way to request the creation for composite services. Furthermore the framework enables to request and combine multimodal value-added services, which means that they are no longer limited regarding media types such as audio, video and text. The proposed framework has been validated by a prototype implementation

    An FPGA-Based System for Tracking Digital Information Transmitted via Peer-to-Peer Protocols

    Get PDF
    This thesis addresses the problem of identifying and tracking digital information that is shared using peer-to-peer file transfer and Voice over IP (VoIP) protocols. The goal of the research is to develop a system for detecting and tracking the illicit dissemination of sensitive government information using file sharing applications within a target network, and tracking terrorist cells or criminal organizations that are covertly communicating using VoIP applications. A digital forensic tool is developed using an FPGA-based embedded software application. The tool is designed to process file transfers using the BitTorrent peer-to-peer protocol and VoIP phone calls made using the Session Initiation Protocol (SIP). The tool searches a network for selected peer-to-peer control messages using payload analysis and compares the unique identifier of the file being shared or phone number being used against a list of known contraband files or phone numbers. If the identifier is found on the list, the control packet is added to a log file for later forensic analysis. Results show that the FPGA tool processes peer-to-peer packets of interest 92% faster than a software-only configuration and is 99.0% accurate at capturing and processing BitTorrent Handshake messages under a network traffic load of at least 89.6 Mbps. When SIP is added to the system, the probability of intercept for BitTorrent Handshake messages remains at 99.0% and the probability of intercept for SIP control packets is 97.6% under a network traffic load of at least 89.6 Mbps, demonstrating that the tool can be expanded to process additional peer-to-peer protocols with minimal impact on overall performance

    Virtual communities in the IMS network

    Get PDF
    • …
    corecore