363 research outputs found

    Hybrid-Vehfog: A Robust Approach for Reliable Dissemination of Critical Messages in Connected Vehicles

    Full text link
    Vehicular Ad-hoc Networks (VANET) enable efficient communication between vehicles with the aim of improving road safety. However, the growing number of vehicles in dense regions and obstacle shadowing regions like Manhattan and other downtown areas leads to frequent disconnection problems resulting in disrupted radio wave propagation between vehicles. To address this issue and to transmit critical messages between vehicles and drones deployed from service vehicles to overcome road incidents and obstacles, we proposed a hybrid technique based on fog computing called Hybrid-Vehfog to disseminate messages in obstacle shadowing regions, and multi-hop technique to disseminate messages in non-obstacle shadowing regions. Our proposed algorithm dynamically adapts to changes in an environment and benefits in efficiency with robust drone deployment capability as needed. Performance of Hybrid-Vehfog is carried out in Network Simulator (NS-2) and Simulation of Urban Mobility (SUMO) simulators. The results showed that Hybrid-Vehfog outperformed Cloud-assisted Message Downlink Dissemination Scheme (CMDS), Cross-Layer Broadcast Protocol (CLBP), PEer-to-Peer protocol for Allocated REsource (PrEPARE), Fog-Named Data Networking (NDN) with mobility, and flooding schemes at all vehicle densities and simulation times

    DFCV: A Novel Approach for Message Dissemination in Connected Vehicles using Dynamic Fog

    Full text link
    Vehicular Ad-hoc Network (VANET) has emerged as a promising solution for enhancing road safety. Routing of messages in VANET is challenging due to packet delays arising from high mobility of vehicles, frequently changing topology, and high density of vehicles, leading to frequent route breakages and packet losses. Previous researchers have used either mobility in vehicular fog computing or cloud computing to solve the routing issue, but they suffer from large packet delays and frequent packet losses. We propose Dynamic Fog for Connected Vehicles (DFCV), a fog computing based scheme which dynamically creates, increments and destroys fog nodes depending on the communication needs. The novelty of DFCV lies in providing lower delays and guaranteed message delivery at high vehicular densities. Simulations were conducted using hybrid simulation consisting of ns-2, SUMO, and Cloudsim. Results show that DFCV ensures efficient resource utilization, lower packet delays and losses at high vehicle densities

    A Mini Review of Peer-to-Peer (P2P) for Vehicular Communication

    Get PDF
    In recent times, peer-to-peer (P2P) has evolved, where it leverages the capability to scale compared to server-based networks. Consequently, P2P has appeared to be the future distributed systems in emerging several applications. P2P is actually a disruptive technology for setting up applications that scale to numerous concurrent individuals. Thus, in a P2P distributed system, individuals become themselves as peers through contributing, sharing, and managing the resources in a network. In this paper, P2P for vehicular communication is explored. A comprehensive of the functioning concept of both P2P along with vehicular communication is examined. In addition, the advantages are furthermore conversed for a far better understanding on the implementation

    Game Theory-based Allocation Management in VCC Networks

    Get PDF
    Vehicular Ad-hoc Networks (VANETs) have contributed significantly towards improving road traffic management and safety. VANETs, integrated with Vehicular Clouds, enable underutilized vehicular resources for efficient resource management, fulfilling service requests. However, due to the frequently changing network topology of vehicular cloud networks, the vehicles frequently move out of the coverage area of roadside units (RSUs), disconnecting from the RSUs and interrupting the fulfillment of ongoing service requests. In addition, working with heterogeneous vehicles makes it difficult to match the service requests with the varying resources of individual vehicles. Therefore, to address these challenges, this work introduces the concept of clustering resources from nearby vehicles to form Combined Resource Units (CRUs). These units contribute to maximizing the rate of fulfillment of service requests. CRU composition is helpful, especially for the heterogeneity of vehicles, since it allows clustering the varying resources of vehicles into a single unit. The vehicle resources are clustered into CRUs based on three different sized pools, making the service matching process more time-efficient. Previous works have adopted stochastic models for resource clustering configurations. However, this work adopts distinct search algorithms for CRU composition, which are computationally less complex. Results showed that light-weight search algorithms, such as selective search algorithm (SSA), achieved close to 80% of resource availability without over-assembling CRUs in higher density scenarios. Following CRU composition, a game-theoretical approach is opted for allocating CRUs to service requests. Under this approach, the CRUs play a non-cooperative game to maximize their utility, contributing to factors such as fairness, efficiency, improved system performance and reduced system overhead. The utility value takes into account the RSS (Received Signal Strength) value of each CRU and the resources required in fulfilling a request. Results of the game model showed that the proposed approach of CRU composition obtained 90% success rate towards matching and fulfilling service requests

    Slicing on the road: enabling the automotive vertical through 5G network softwarization

    Get PDF
    The demanding requirements of Vehicle-to-Everything (V2X) applications, such as ultra-low latency, high-bandwidth, highly-reliable communication, intensive computation and near-real time data processing, raise outstanding challenges and opportunities for fifth generation (5G) systems. By allowing an operator to flexibly provide dedicated logical networks with (virtualized) functionalities over a common physical infrastructure, network slicing candidates itself as a prominent solution to support V2X over upcoming programmable and softwarized 5G systems in a business-agile manner. In this paper, a network slicing framework is proposed along with relevant building blocks and mechanisms to support V2X applications by flexibly orchestrating multi-access and edge-dominated 5G network infrastructures, especially with reference to roaming scenarios. Proof of concept experiments using the Mininet emulator showcase the viability and potential benefits of the proposed framework for cooperative driving use cases1812não temMinistério da Ciência, Tecnologia, Inovações e Comunicações - MCTICThe research of Prof. Christian Esteve Rothenberg was partially supported by the H2020 4th EUBR Collaborative Call, under the grant agreement number 777067 (NECOS - Novel Enablers for Cloud Slicing), funded by the European Commission and the Brazilian Ministry of Science, Technology, Innovation, and Communication (MCTIC) through RNP and CTI

    Mobile Edge Computing

    Get PDF
    This is an open access book. It offers comprehensive, self-contained knowledge on Mobile Edge Computing (MEC), which is a very promising technology for achieving intelligence in the next-generation wireless communications and computing networks. The book starts with the basic concepts, key techniques and network architectures of MEC. Then, we present the wide applications of MEC, including edge caching, 6G networks, Internet of Vehicles, and UAVs. In the last part, we present new opportunities when MEC meets blockchain, Artificial Intelligence, and distributed machine learning (e.g., federated learning). We also identify the emerging applications of MEC in pandemic, industrial Internet of Things and disaster management. The book allows an easy cross-reference owing to the broad coverage on both the principle and applications of MEC. The book is written for people interested in communications and computer networks at all levels. The primary audience includes senior undergraduates, postgraduates, educators, scientists, researchers, developers, engineers, innovators and research strategists
    corecore