88,349 research outputs found

    A Resource Intensive Traffic-Aware Scheme for Cluster-based Energy Conservation in Wireless Devices

    Full text link
    Wireless traffic that is destined for a certain device in a network, can be exploited in order to minimize the availability and delay trade-offs, and mitigate the Energy consumption. The Energy Conservation (EC) mechanism can be node-centric by considering the traversed nodal traffic in order to prolong the network lifetime. This work describes a quantitative traffic-based approach where a clustered Sleep-Proxy mechanism takes place in order to enable each node to sleep according to the time duration of the active traffic that each node expects and experiences. Sleep-proxies within the clusters are created according to pairwise active-time comparison, where each node expects during the active periods, a requested traffic. For resource availability and recovery purposes, the caching mechanism takes place in case where the node for which the traffic is destined is not available. The proposed scheme uses Role-based nodes which are assigned to manipulate the traffic in a cluster, through the time-oriented backward difference traffic evaluation scheme. Simulation study is carried out for the proposed backward estimation scheme and the effectiveness of the end-to-end EC mechanism taking into account a number of metrics and measures for the effects while incrementing the sleep time duration under the proposed framework. Comparative simulation results show that the proposed scheme could be applied to infrastructure-less systems, providing energy-efficient resource exchange with significant minimization in the power consumption of each device.Comment: 6 pages, 8 figures, To appear in the proceedings of IEEE 14th International Conference on High Performance Computing and Communications (HPCC-2012) of the Third International Workshop on Wireless Networks and Multimedia (WNM-2012), 25-27 June 2012, Liverpool, U

    Performance Analysis of Publish/Subscribe Systems

    Full text link
    The Desktop Grid offers solutions to overcome several challenges and to answer increasingly needs of scientific computing. Its technology consists mainly in exploiting resources, geographically dispersed, to treat complex applications needing big power of calculation and/or important storage capacity. However, as resources number increases, the need for scalability, self-organisation, dynamic reconfigurations, decentralisation and performance becomes more and more essential. Since such properties are exhibited by P2P systems, the convergence of grid computing and P2P computing seems natural. In this context, this paper evaluates the scalability and performance of P2P tools for discovering and registering services. Three protocols are used for this purpose: Bonjour, Avahi and Free-Pastry. We have studied the behaviour of theses protocols related to two criteria: the elapsed time for registrations services and the needed time to discover new services. Our aim is to analyse these results in order to choose the best protocol we can use in order to create a decentralised middleware for desktop grid

    Mobile Online Gaming via Resource Sharing

    Full text link
    Mobile gaming presents a number of main issues which remain open. These are concerned mainly with connectivity, computational capacities, memory and battery constraints. In this paper, we discuss the design of a fully distributed approach for the support of mobile Multiplayer Online Games (MOGs). In mobile environments, several features might be exploited to enable resource sharing among multiple devices / game consoles owned by different mobile users. We show the advantages of trading computing / networking facilities among mobile players. This operation mode opens a wide number of interesting sharing scenarios, thus promoting the deployment of novel mobile online games. In particular, once mobile nodes make their resource available for the community, it becomes possible to distribute the software modules that compose the game engine. This allows to distribute the workload for the game advancement management. We claim that resource sharing is in unison with the idea of ludic activity that is behind MOGs. Hence, such schemes can be profitably employed in these contexts.Comment: Proceedings of 3nd ICST/CREATE-NET Workshop on DIstributed SImulation and Online gaming (DISIO 2012). In conjunction with SIMUTools 2012. Desenzano, Italy, March 2012. ISBN: 978-1-936968-47-

    Cross-Layer Peer-to-Peer Track Identification and Optimization Based on Active Networking

    Get PDF
    P2P applications appear to emerge as ultimate killer applications due to their ability to construct highly dynamic overlay topologies with rapidly-varying and unpredictable traffic dynamics, which can constitute a serious challenge even for significantly over-provisioned IP networks. As a result, ISPs are facing new, severe network management problems that are not guaranteed to be addressed by statically deployed network engineering mechanisms. As a first step to a more complete solution to these problems, this paper proposes a P2P measurement, identification and optimisation architecture, designed to cope with the dynamicity and unpredictability of existing, well-known and future, unknown P2P systems. The purpose of this architecture is to provide to the ISPs an effective and scalable approach to control and optimise the traffic produced by P2P applications in their networks. This can be achieved through a combination of different application and network-level programmable techniques, leading to a crosslayer identification and optimisation process. These techniques can be applied using Active Networking platforms, which are able to quickly and easily deploy architectural components on demand. This flexibility of the optimisation architecture is essential to address the rapid development of new P2P protocols and the variation of known protocols
    • …
    corecore