20 research outputs found

    Actas da 10ª Conferência sobre Redes de Computadores

    Get PDF
    Universidade do MinhoCCTCCentro AlgoritmiCisco SystemsIEEE Portugal Sectio

    Provision of adaptive and context-aware service discovery for the Internet of Things

    Get PDF
    The IoT concept has revolutionised the vision of the future Internet with the advent of standards such as 6LoWPAN making it feasible to extend the Internet into previously isolated environments, e.g., WSNs. The abstraction of resources as services, has opened these environments to a new plethora of potential applications. Moreover, the web service paradigm can be used to provide interoperability by offering a standard interface to interact with these services to enable WoT paradigm. However, these networks pose many challenges, in terms of limited resources, that make the adaptability of existing IP-based solutions infeasible. As traditional service discovery and selection solutions demand heavy communication and use bulky formats, which are unsuitable for these resource-constrained devices incorporating sleep cycles to save energy. Even a registry based approach exhibits burdensome traffic in maintaining the availability status of the devices. The feasible solution for service discovery and selection is instrumental to enable the wide application coverage of these networks in the future. This research project proposes, TRENDY, a new compact and adaptive registry-based SDP with context awareness for the IoT, with more emphasis given to constrained networks, e.g., 6LoWPAN It uses CoAP-based light-weight and RESTful web services to provide standard interoperable interfaces, which can be easily translated from HTTP. TRENDY's service selection mechanism collects and intelligently uses the context information to select appropriate services for user applications based on the available context information of users and services. In addition, TRENDY introduces an adaptive timer algorithm to minimise control overhead for status maintenance, which also reduces energy consumption. Its context-aware grouping technique divides the network at the application layer, by creating location-based groups. This grouping of nodes localises the control overhead and provides the base for service composition, localised aggregation and processing of data. Different grouping roles enable the resource-awareness by offering profiles with varied responsibilities, where high capability devices can implement powerful profiles to share the load of other low capability devices. Thus, it allows the productive usage of network resources. Furthermore, this research project proposes APPUB, an adaptive caching technique, that has the following benefits: it allows service hosts to share their load with the resource directory and also decreases the service invocation delay. The performance of TRENDY and its mechanisms is evaluated using an extensive number of experiments performed using emulated Tmote sky nodes in the COOJA environment. The analysis of the results validates the benefit of performance gain for all techniques. The service selection and APPUB mechanisms improve the service invocation delay considerably that, consequently, reduces the traffic in the network. The timer technique consistently achieved the lowest control overhead, which eventually decreased the energy consumption of the nodes to prolong the network lifetime. Moreover, the low traffic in dense networks decreases the service invocations delay, and makes the solution more scalable. The grouping mechanism localises the traffic, which increases the energy efficiency while improving the scalability. In summary, the experiments demonstrate the benefit of using TRENDY and its techniques in terms of increased energy efficiency and network lifetime, reduced control overhead, better scalability and optimised service invocation time

    Ubiquitous Computing

    Get PDF
    The aim of this book is to give a treatment of the actively developed domain of Ubiquitous computing. Originally proposed by Mark D. Weiser, the concept of Ubiquitous computing enables a real-time global sensing, context-aware informational retrieval, multi-modal interaction with the user and enhanced visualization capabilities. In effect, Ubiquitous computing environments give extremely new and futuristic abilities to look at and interact with our habitat at any time and from anywhere. In that domain, researchers are confronted with many foundational, technological and engineering issues which were not known before. Detailed cross-disciplinary coverage of these issues is really needed today for further progress and widening of application range. This book collects twelve original works of researchers from eleven countries, which are clustered into four sections: Foundations, Security and Privacy, Integration and Middleware, Practical Applications

    Implementing a hardware-embedded reactive agents platform based on a service-oriented architecture over heterogeneous wireless sensor networks

    Get PDF
    Wireless Sensor Networks (WSNs) represent a key technology for collecting important information from different sources in context-aware environments. Unfortunately, integrating devices from different architectures or wireless technologies into a single sensor network is not an easy task for designers and developers. In this sense, distributed architectures, such as service-oriented architectures and multi-agent systems, can facilitate the integration of heterogeneous sensor networks. In addition, the sensors’ capabilities can be expanded by means of intelligent agents that change their behavior dynamically. This paper presents the Hardware-Embedded Reactive Agents (HERA) platform. HERA is based on Services laYers over Light PHysical devices (SYLPH), a distributed platform which integrates a service-oriented approach into heterogeneous WSNs. As SYLPH, HERA can be executed over multiple devices independently of their wireless technology, their architecture or the programming language they use. However, HERA goes one step ahead of SYLPH and adds reactive agents to the platform and also a reasoning mechanism that provides HERA Agents with Case-Based Planning features that allow solving problems considering past experiences. Unlike other approaches, HERA allows developing applications where reactive agents are directly embedded into heterogeneous wireless sensor nodes with reduced computational resources

    10th SC@RUG 2013 proceedings:Student Colloquium 2012-2013

    Get PDF

    10th SC@RUG 2013 proceedings:Student Colloquium 2012-2013

    Get PDF

    10th SC@RUG 2013 proceedings:Student Colloquium 2012-2013

    Get PDF

    10th SC@RUG 2013 proceedings:Student Colloquium 2012-2013

    Get PDF

    10th SC@RUG 2013 proceedings:Student Colloquium 2012-2013

    Get PDF

    10th SC@RUG 2013 proceedings:Student Colloquium 2012-2013

    Get PDF
    corecore