450 research outputs found

    The Dynamics of Vehicular Networks in Urban Environments

    Full text link
    Vehicular Ad hoc NETworks (VANETs) have emerged as a platform to support intelligent inter-vehicle communication and improve traffic safety and performance. The road-constrained, high mobility of vehicles, their unbounded power source, and the emergence of roadside wireless infrastructures make VANETs a challenging research topic. A key to the development of protocols for inter-vehicle communication and services lies in the knowledge of the topological characteristics of the VANET communication graph. This paper explores the dynamics of VANETs in urban environments and investigates the impact of these findings in the design of VANET routing protocols. Using both real and realistic mobility traces, we study the networking shape of VANETs under different transmission and market penetration ranges. Given that a number of RSUs have to be deployed for disseminating information to vehicles in an urban area, we also study their impact on vehicular connectivity. Through extensive simulations we investigate the performance of VANET routing protocols by exploiting the knowledge of VANET graphs analysis.Comment: Revised our testbed with even more realistic mobility traces. Used the location of real Wi-Fi hotspots to simulate RSUs in our study. Used a larger, real mobility trace set, from taxis in Shanghai. Examine the implications of our findings in the design of VANET routing protocols by implementing in ns-3 two routing protocols (GPCR & VADD). Updated the bibliography section with new research work

    SCALABLE MULTI-HOP DATA DISSEMINATION IN VEHICULAR AD HOC NETWORKS

    Get PDF
    Vehicular Ad hoc Networks (VANETs) aim at improving road safety and travel comfort, by providing self-organizing environments to disseminate traffic data, without requiring fixed infrastructure or centralized administration. Since traffic data is of public interest and usually benefit a group of users rather than a specific individual, it is more appropriate to rely on broadcasting for data dissemination in VANETs. However, broadcasting under dense networks suffers from high percentage of data redundancy that wastes the limited radio channel bandwidth. Moreover, packet collisions may lead to the broadcast storm problem when large number of vehicles in the same vicinity rebroadcast nearly simultaneously. The broadcast storm problem is still challenging in the context of VANET, due to the rapid changes in the network topology, which are difficult to predict and manage. Existing solutions either do not scale well under high density scenarios, or require extra communication overhead to estimate traffic density, so as to manage data dissemination accordingly. In this dissertation, we specifically aim at providing an efficient solution for the broadcast storm problem in VANETs, in order to support different types of applications. A novel approach is developed to provide scalable broadcast without extra communication overhead, by relying on traffic regime estimation using speed data. We theoretically validate the utilization of speed instead of the density to estimate traffic flow. The results of simulating our approach under different density scenarios show its efficiency in providing scalable multi-hop data dissemination for VANETs

    Cooperative Content Dissemination on Vehicle Networks

    Get PDF
    As redes veiculares têm sido alvo de grandes avanços nos últimos anos, sobretudo devido ao crescente interesse por veículos inteligentes e autónomos que motiva investimentos avultados por parte da indústria automóvel. A inexistência de uma forma oportuna e económica de executar atualizações OTA (over-the-air) está a contribuir para o adiar do lançamento de grandes frotas de veículos inteligentes. O custo associado à transmissão de dados através de redes celulares é muito elevado e não se pode garantir que cada veículo tenha acesso a uma estação ou estacionamento com conectividade adequada em tempo útil, onde possa obter os dados esperados. Com base nestas premissas, esta tese apresenta a concepção e implementação de um protocolo cooperativo de disseminação de conteúdos que aproveita as ligações Veículo-a-Veículo (V2V) para assegurar uma distribuição de dados pela rede com custos reduzidos. Além disso, este trabalho é complementado e suportado com uma análise do desempenho do protocolo numa rede de 25 veículos.Vehicular networks have seen great advancements over the last few years, mostly due to the increased eagerness for smart and autonomous vehicles that motivate hefty investments by the automotive industry. The absence of a timely and cost-effective way to perform over-the-air (OTA) updates is contributing to defer the deployment of large fleets of connected vehicles. There is a high cost associated with transmitting data over cellular networks and it cannot be expected that every vehicle has access to a station or depot with adequate connectivity where it can get the awaited data cheaply nor that this solution happens timely enough. With this in mind, this thesis presents the design and implementation of a cooperative content dissemination protocol that takes advantage of Vehicle-to-Vehicle (V2V) communication links to distribute data across a network with reduced costs. Moreover, this work is complemented with a performance analysis of the protocol on a deployed network of 25 vehicles

    Cooperative Caching in Vehicular Networks - Distributed Cache Invalidation Using Information Freshness

    Get PDF
    Recent advances in vehicular communications has led to significant opportunities to deploy variety of applications and services improving road safety and traffic efficiency to road users. In regard to traffic management services in distributed vehicular networks, this thesis work evaluates managing storage at vehicles efficiently as cache for moderate cellular transmission costs while still achieving correct routing decision. Road status information was disseminated to oncoming traffic in the form of cellular notifications using a reporting mechanism. High transmission costs due to redundant notifications published by all vehicles following a basic reporting mechanism: Default-approach was overcome by implementing caching at every vehicle. A cooperative based reporting mechanism utilizing cache: Cooperative-approach, was proposed to notify road status while avoiding redundant notifications. In order to account those significantly relevant vehicles for decision-making process which did not actually publish, correspondingly virtual cache entries were implemented. To incorporate the real-world scenario of varying vehicular rate observed on any road, virtual cache entries based on varying vehicular rate was modeled as Adaptive Cache Management mechanism. The combinations of proposed mechanisms were evaluated for cellular transmission costs and accuracy achieved for making correct routing decision. Simulation case studies comprising varying vehicular densities and different false detection rates were conducted to demonstrate the performance of these mechanisms. Additionally, the proposed mechanisms were evaluated in different decision-making algorithms for both information freshness in changing road conditions and for robustness despite false detections. The simulation results demonstrated that the combination of proposed mechanisms was capable of achieving realistic information accuracy enough to make correct routing decision despite false readings while keeping network costs significantly low. Furthermore, using QoI-based decision algorithm in high density vehicular networks, fast adaptability to frequently changing road conditions as well as quick recovery from false notifications by invalidating them with correct notifications were indicated

    Detecting Non-Line of Sight to Prevent Accidents in Vehicular Ad hoc Networks

    Get PDF
    There are still many challenges in the field of VANETs that encouraged researchers to conduct further investigation in this field to meet these challenges. The issue pertaining to routing protocols such as delivering the warning messages to the vehicles facing Non-Line of Sight (NLOS) situations without causing the storm problem and channel contention, is regarded as a serious dilemma which is required to be tackled in VANET, especially in congested environments. This requires the designing of an efficient mechanism of routing protocol that can broadcast the warning messages from the emergency vehicles to the vehicles under NLOS, reducing the overhead and increasing the packet delivery ratio with a reduced time delay and channel utilisation. The main aim of this work is to develop the novel routing protocol for a high-density environment in VANET through utilisation of its high mobility features, aid of the sensors such as Global Positioning System (GPS) and Navigation System (NS). In this work, the cooperative approach has been used to develop the routing protocol called the Co-operative Volunteer Protocol (CVP), which uses volunteer vehicles to disseminate the warning message from the source to the target vehicle under NLOS issue; this also increases the packet delivery ratio, detection of NLOS and resolution of NLOS by delivering the warning message successfully to the vehicle under NLOS, thereby causing a direct impact on the reduction of collisions between vehicles in normal mode and emergency mode on the road near intersections or on highways. The cooperative approach adopted for warning message dissemination reduced the rebroadcast rate of messages, thereby decreasing significantly the storm issue and the channel contention. A novel architecture has been developed by utilising the concept of a Context-Aware System (CAS), which clarifies the OBU components and their interaction with each other in order to collect data and take the decisions based on the sensed circumstances. The proposed architecture has been divided into three main phases: sensing, processing and acting. The results obtained from the validation of the proposed CVP protocol using the simulator EstiNet under specific conditions and parameters showed that performance of the proposed protocol is better than that of the GRANT protocol with regard to several metrics such as packet delivery ratio, neighbourhood awareness, channel utilisation, overhead and latency. It is also successfully shown that the proposed CVP could detect the NLOS situation and solves it effectively and efficiently for both the intersection scenario in urban areas and the highway scenario

    Towards video streaming in IoT environments: vehicular communication perspective

    Get PDF
    Multimedia oriented Internet of Things (IoT) enables pervasive and real-time communication of video, audio and image data among devices in an immediate surroundings. Today's vehicles have the capability of supporting real time multimedia acquisition. Vehicles with high illuminating infrared cameras and customized sensors can communicate with other on-road devices using dedicated short-range communication (DSRC) and 5G enabled communication technologies. Real time incidence of both urban and highway vehicular traffic environment can be captured and transmitted using vehicle-to-vehicle and vehicle-to-infrastructure communication modes. Video streaming in vehicular IoT (VSV-IoT) environments is in growing stage with several challenges that need to be addressed ranging from limited resources in IoT devices, intermittent connection in vehicular networks, heterogeneous devices, dynamism and scalability in video encoding, bandwidth underutilization in video delivery, and attaining application-precise quality of service in video streaming. In this context, this paper presents a comprehensive review on video streaming in IoT environments focusing on vehicular communication perspective. Specifically, significance of video streaming in vehicular IoT environments is highlighted focusing on integration of vehicular communication with 5G enabled IoT technologies, and smart city oriented application areas for VSV-IoT. A taxonomy is presented for the classification of related literature on video streaming in vehicular network environments. Following the taxonomy, critical review of literature is performed focusing on major functional model, strengths and weaknesses. Metrics for video streaming in vehicular IoT environments are derived and comparatively analyzed in terms of their usage and evaluation capabilities. Open research challenges in VSV-IoT are identified as future directions of research in the area. The survey would benefit both IoT and vehicle industry practitioners and researchers, in terms of augmenting understanding of vehicular video streaming and its IoT related trends and issues
    corecore