473 research outputs found

    Pediatric Bone Age Assessment Using Deep Convolutional Neural Networks

    Full text link
    Skeletal bone age assessment is a common clinical practice to diagnose endocrine and metabolic disorders in child development. In this paper, we describe a fully automated deep learning approach to the problem of bone age assessment using data from Pediatric Bone Age Challenge organized by RSNA 2017. The dataset for this competition is consisted of 12.6k radiological images of left hand labeled by the bone age and sex of patients. Our approach utilizes several deep learning architectures: U-Net, ResNet-50, and custom VGG-style neural networks trained end-to-end. We use images of whole hands as well as specific parts of a hand for both training and inference. This approach allows us to measure importance of specific hand bones for the automated bone age analysis. We further evaluate performance of the method in the context of skeletal development stages. Our approach outperforms other common methods for bone age assessment.Comment: 14 pages, 9 figure

    Feature Detection in Medical Images Using Deep Learning

    Get PDF
    This project explores the use of deep learning to predict age based on pediatric hand X-Rays. Data from the Radiological Society of North Americaā€™s pediatric bone age challenge were used to train and evaluate a convolutional neural network. The project used InceptionV3, a CNN developed by Google, that was pre-trained on ImageNet, a popular online image dataset. Our fine-tuned version of InceptionV3 yielded an average error of less than 10 months between predicted and actual age. This project shows the effectiveness of deep learning in analyzing medical images and the potential for even greater improvements in the future. In addition to the technological and potential clinical benefits of these methods, this project will serve as a useful pedagogical tool for introducing the challenges and applications of deep learning to the Bryant community
    • ā€¦
    corecore