4,934 research outputs found

    Developing A Road Freight Transport Performance Measurement System To Drive Sustainability:An Empirical Study Of Egyptian Road Freight Transport Companies

    Get PDF
    While several road freight performance measurement systems have been developed, only a limited number of quantified performance measurement frameworks encompassing diverse sets of performance metrics from multiple sustainable perspectives are available on a technological platform. These sets of metrics could be integrated as crucial performance indicators for assessing the operational performance of various road freight transport companies. These indicators include fuel efficiency, trip duration, vehicle loading, and cargo capacity. The objective of this research is to construct a conceptual road freight performance measurement framework that comprehensively incorporates performance elements from sustainable viewpoints (economic, environmental, and social), leveraging technology to measure the performance of road freight transport companies. This proposed framework aims to aid these companies in gauging their performance using technology, thus enhancing their operations towards sustainability.Within the road freight transport sector, several challenges exist, with congestion, road infrastructure maintenance, and driver training and qualifications being particularly pressing issues. The developed performance measurement framework offers the means for companies to evaluate the effects of technology integration on vehicles and overall performance. This allows companies to measure their performance from an operational standpoint rather than solely a strategic one, thereby identifying areas requiring improvement. Egypt was chosen as the empirical study location due to its relatively low level of technological integration within its road freight sector.This thesis employs an explanatory mixed methods approach, encompassing four distinct phases. The first phase entails a review to formulate the proposed theoretical performance measurement framework. Subsequently, the second phase involves conducting semi-structured interviews using a Delphi method to both develop a conceptual performance measurement framework and explore the present state of Egypt's road freight transport sector. Following this, the third phase encompasses surveys based on the results derived from Delphi analysis, involving diverse participants from the road freight transport industry. The aim is to validate the developed performance measurement framework through an empirical study conducted in Egypt. Lastly, the fourth phase centres around organizing focus groups involving stakeholders within road freight transport companies. The goal here is to propose a roadmap for implementing the developed road freight transport performance measurement framework within the Egyptian context.The primary theoretical contribution of this research is the development of a road freight transport performance measurement framework that integrates the three sustainability dimensions with technology. Additionally, this study offers practical guidance for the application of the developed framework in various countries and contexts. From a practical standpoint, this research aids road freight transport managers in evaluating their operational performance, thereby identifying challenges, devising action plans, and making informed decisions to mitigate these issues and enhance sustainability-oriented performance. Ultimately, the developed road freight transport performance measurement framework is poised to promote performance measurement aligned with technology, fostering progress towards achieving the sustainable development goals by 2030

    Glaubwürdigkeit und Einsatz des szenariobasierten X-in-the-Loop-Tests für Fahrerassistenzsysteme

    Get PDF
    Fahrerassistenzsysteme tragen gerade im Bereich der Nutzfahrzeuge zur Verkehrssicherheit bei. Darüber hinaus bietet das hochautomatisierte Fahren neue Geschäftsmodelle. Eine zentrale Herausforderung bei der Entwicklung dieser Systeme ist die steigende Breite und Tiefe der Testfälle. Bereits in heutigen Entwicklungsprojekten stoßen vorhandene Realtestkapazitäten an ihre Grenzen. Daher sind neue Methoden zum Test von Fahrerassistenzsystemen erforderlich. Die Kombination aus szenariobasiertem Testen und X-in-the-Loop-Testumgebungen ist ein vielversprechender Ansatz. In dieser Dissertation werden drei Einsatzmöglichkeiten des szenariobasierten XiL-Tests in einem Serien-Entwicklungsprojekt eingeführt und diskutiert. Als besonders geeignet wird hierbei der Einsatz beim Software-Qualifizierungstest bewertet und in einem Prozessentwurf weiter detailliert. Schwerpunkt ist die Zuordnung von Szenarien auf Testumgebungen mit dem Ziel, die Testabdeckung, die Glaubwürdigkeit der Testergebnisse und die Effizienz der Testdurchführung zu optimieren. Ein entscheidender Prozessschritt ist die sogenannte Glaubwürdigkeitsbewertung. Diese bewertet ein konkretes Szenario in einer spezifischen Testumgebung und besteht je nach Konfidenzanforderung aus den drei Schritten Prädiktion, Plausibilisierung und Validierung. In der Prädiktion werden mithilfe von Unsicherheitsmodellen für drei Subsysteme der XiL-Umgebung und einer Monte-Carlo-Simulation Testergebnis-Verteilungen generiert und mit einem Multinomialansatz Konfidenzintervalle ermittelt. Die Plausibilisierung prüft mithilfe von Pass/Fail-Kriterien und Szenariodistanzmaßen die Äquivalenz einzelner Testausführungen in XiL und Realtest. Bei der Validierung findet ein statistischer Abgleich der Testergebnis-Verteilungen aus XiL und Realtest mithilfe des Barnard-Tests statt. Die Glaubwürdigkeitsbewertung wird auf Basis von Software-in-the-Loop-Daten eines Entwicklungsprojekts für Fahrerassistenzsysteme für insgesamt sieben konkrete Szenarien evaluiert

    Image Filtering Techniques for Object Recognition in Autonomous Vehicles

    Get PDF
    The deployment of autonomous vehicles has the potential to significantly lessen the variety of current harmful externalities, (such as accidents, traffic congestion, security, and environmental degradation), making autonomous vehicles an emerging topic of research. In this paper, a literature review of autonomous vehicle development has been conducted with a notable finding that autonomous vehicles will inevitably become an indispensable future greener solution. Subsequently, 5 different deep learning models, YOLOv5s, EfficientNet-B7, Xception, MobilenetV3, and InceptionV4, have been built and analyzed for 2-D object recognition in the navigation system. While testing on the BDD100K dataset, YOLOv5s and EfficientNet-B7 appear to be the two best models. Finally, this study has proposed Hessian, Laplacian, and Hessian-based Ridge Detection filtering techniques to optimize the performance and sustainability of those 2 models. The results demonstrate that these filters could increase the mean average precision by up to 11.81%, reduce detection time by up to 43.98%, and significantly reduce energy consumption by up to 50.69% when applied to YOLOv5s and EfficientNet-B7 models. Overall, all the experiment results are promising and could be extended to other domains for semantic understanding of the environment. Additionally, various filtering algorithms for multiple object detection and classification could be applied to other areas. Different recommendations and future work have been clearly defined in this study

    Progression Cognition Reinforcement Learning with Prioritized Experience for Multi-Vehicle Pursuit

    Get PDF
    Multi-vehicle pursuit (MVP) such as autonomous police vehicles pursuing suspects is important but very challenging due to its mission and safety-critical nature. While multi-agent reinforcement learning (MARL) algorithms have been proposed for MVP in structured grid-pattern roads, the existing algorithms use random training samples in centralized learning, which leads to homogeneous agents showing low collaboration performance. For the more challenging problem of pursuing multiple evaders, these algorithms typically select a fixed target evader for pursuers without considering dynamic traffic situation, which significantly reduces pursuing success rate. To address the above problems, this paper proposes a Progression Cognition Reinforcement Learning with Prioritized Experience for MVP (PEPCRL-MVP) in urban multi-intersection dynamic traffic scenes. PEPCRL-MVP uses a prioritization network to assess the transitions in the global experience replay buffer according to each MARL agent’s parameters. With the personalized and prioritized experience set selected via the prioritization network, diversity is introduced to the MARL learning process, which can improve collaboration and task-related performance. Furthermore, PEPCRL-MVP employs an attention module to extract critical features from dynamic urban traffic environments. These features are used to develop a progression cognition method to adaptively group pursuing vehicles. Each group efficiently targets one evading vehicle. Extensive experiments conducted with a simulator over unstructured roads of an urban area show that PEPCRL-MVP is superior to other state-of-the-art methods. Specifically, PEPCRL-MVP improves pursuing efficiency by 3.95 % over Twin Delayed Deep Deterministic policy gradient-Decentralized Multi-Agent Pursuit and its success rate is 34.78 % higher than that of Multi-Agent Deep Deterministic Policy Gradient. Codes are open-sourced

    Multidisciplinary perspectives on Artificial Intelligence and the law

    Get PDF
    This open access book presents an interdisciplinary, multi-authored, edited collection of chapters on Artificial Intelligence (‘AI’) and the Law. AI technology has come to play a central role in the modern data economy. Through a combination of increased computing power, the growing availability of data and the advancement of algorithms, AI has now become an umbrella term for some of the most transformational technological breakthroughs of this age. The importance of AI stems from both the opportunities that it offers and the challenges that it entails. While AI applications hold the promise of economic growth and efficiency gains, they also create significant risks and uncertainty. The potential and perils of AI have thus come to dominate modern discussions of technology and ethics – and although AI was initially allowed to largely develop without guidelines or rules, few would deny that the law is set to play a fundamental role in shaping the future of AI. As the debate over AI is far from over, the need for rigorous analysis has never been greater. This book thus brings together contributors from different fields and backgrounds to explore how the law might provide answers to some of the most pressing questions raised by AI. An outcome of the Católica Research Centre for the Future of Law and its interdisciplinary working group on Law and Artificial Intelligence, it includes contributions by leading scholars in the fields of technology, ethics and the law.info:eu-repo/semantics/publishedVersio

    A Survey on Socially Aware Robot Navigation: Taxonomy and Future Challenges

    Get PDF
    Socially aware robot navigation is gaining popularity with the increase in delivery and assistive robots. The research is further fueled by a need for socially aware navigation skills in autonomous vehicles to move safely and appropriately in spaces shared with humans. Although most of these are ground robots, drones are also entering the field. In this paper, we present a literature survey of the works on socially aware robot navigation in the past 10 years. We propose four different faceted taxonomies to navigate the literature and examine the field from four different perspectives. Through the taxonomic review, we discuss the current research directions and the extending scope of applications in various domains. Further, we put forward a list of current research opportunities and present a discussion on possible future challenges that are likely to emerge in the field

    Modern computing: Vision and challenges

    Get PDF
    Over the past six decades, the computing systems field has experienced significant transformations, profoundly impacting society with transformational developments, such as the Internet and the commodification of computing. Underpinned by technological advancements, computer systems, far from being static, have been continuously evolving and adapting to cover multifaceted societal niches. This has led to new paradigms such as cloud, fog, edge computing, and the Internet of Things (IoT), which offer fresh economic and creative opportunities. Nevertheless, this rapid change poses complex research challenges, especially in maximizing potential and enhancing functionality. As such, to maintain an economical level of performance that meets ever-tighter requirements, one must understand the drivers of new model emergence and expansion, and how contemporary challenges differ from past ones. To that end, this article investigates and assesses the factors influencing the evolution of computing systems, covering established systems and architectures as well as newer developments, such as serverless computing, quantum computing, and on-device AI on edge devices. Trends emerge when one traces technological trajectory, which includes the rapid obsolescence of frameworks due to business and technical constraints, a move towards specialized systems and models, and varying approaches to centralized and decentralized control. This comprehensive review of modern computing systems looks ahead to the future of research in the field, highlighting key challenges and emerging trends, and underscoring their importance in cost-effectively driving technological progress
    corecore