794 research outputs found

    AI-Based Analytics for Hawkers Identification in Video Surveillance for Smart Community

    Get PDF
    Street hawking is a widespread phenomenon in urban areas globally, presenting challenges for local authorities such as traffic congestion, waste management, and negative impacts on the city's image. This research addresses key issues faced by authorities in managing hawkers, including the resistance to formalization, maintaining urban aesthetics, waste disposal, and understanding user preferences. The study investigates the performance of the You Only Look Once (YOLO) algorithm, utilizing Convolutional Neural Networks (CNN) for real-time object detection. To achieve thisobjective, the YOLOv5 algorithm is trained with a custom image dataset collected from the same camera along the street in the city area to detect five classes of objects, namely umbrella, table, stool, car, and people. Real images that were captured via camera and video surveillance were compiled as datasets which are then used to train and test the algorithm. The study aims to provide insights into the data collection process of hawkers along the street around the areas and the development of real-time hawker detection for the smart city application

    Image recognition-based architecture to enhance inclusive mobility of visually impaired people in smart and urban environments

    Get PDF
    The demographic growth that we have witnessed in recent years, which is expected to increase in the years to come, raises emerging challenges worldwide regarding urban mobility, both in transport and pedestrian movement. The sustainable development of cities is also intrinsically linked to urban planning and mobility strategies. The tasks of navigation and orientation in cities are something that we resort to today with great frequency, especially in unknown cities and places. Current navigation solutions refer to the precision aspect as a big challenge, especially between buildings in city centers. In this paper, we focus on the segment of visually impaired people and how they can obtain information about where they are when, for some reason, they have lost their orientation. Of course, the challenges are different and much more challenging in this situation and with this population segment. GPS, a technique widely used for navigation in outdoor environments, does not have the precision we need or the most beneficial type of content because the information that a visually impaired person needs when lost is not the name of the street or the coordinates but a reference point. Therefore, this paper includes the proposal of a conceptual architecture for outdoor positioning of visually impaired people using the Landmark Positioning approach.5311-8814-F0ED | Sara Maria da Cruz Maia de Oliveira PaivaN/

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment

    Application of Image Analytics for Disaster Response in Smart Cities

    Get PDF
    Post-disaster, city planners need to effectively plan response activities and assign rescue teams to specific disaster zones quickly. We address the problem of lack of accurate information of the disaster zones and existence of human survivors in debris using image analytics from smart city data. Innovative usage of smart city infrastructure is proposed as a potential solution to this issue. We collected images from earthquake-hit smart urban environments and implemented a CNN model for classification of these images to identify human body parts out of the debris. TensorFlow backend (using Keras) was utilized for this classification. We were able to achieve 83.2% accuracy from our model. The novel application of image data from smart city infrastructure and the resultant findings from our model has significant implications for effective disaster response operations, especially in smart cities

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin
    corecore