1,519 research outputs found

    People tracking by cooperative fusion of RADAR and camera sensors

    Get PDF
    Accurate 3D tracking of objects from monocular camera poses challenges due to the loss of depth during projection. Although ranging by RADAR has proven effective in highway environments, people tracking remains beyond the capability of single sensor systems. In this paper, we propose a cooperative RADAR-camera fusion method for people tracking on the ground plane. Using average person height, joint detection likelihood is calculated by back-projecting detections from the camera onto the RADAR Range-Azimuth data. Peaks in the joint likelihood, representing candidate targets, are fed into a Particle Filter tracker. Depending on the association outcome, particles are updated using the associated detections (Tracking by Detection), or by sampling the raw likelihood itself (Tracking Before Detection). Utilizing the raw likelihood data has the advantage that lost targets are continuously tracked even if the camera or RADAR signal is below the detection threshold. We show that in single target, uncluttered environments, the proposed method entirely outperforms camera-only tracking. Experiments in a real-world urban environment also confirm that the cooperative fusion tracker produces significantly better estimates, even in difficult and ambiguous situations

    The Fundamentals of Radar with Applications to Autonomous Vehicles

    Get PDF
    Radar systems can be extremely useful for applications in autonomous vehicles. This paper seeks to show how radar systems function and how they can apply to improve autonomous vehicles. First, the basics of radar systems are presented to introduce the basic terminology involved with radar. Then, the topic of phased arrays is presented because of their application to autonomous vehicles. The topic of digital signal processing is also discussed because of its importance for all modern radar systems. Finally, examples of radar systems based on the presented knowledge are discussed to illustrate the effectiveness of radar systems in autonomous vehicles

    Vulnerable road users and connected autonomous vehicles interaction: a survey

    Get PDF
    There is a group of users within the vehicular traffic ecosystem known as Vulnerable Road Users (VRUs). VRUs include pedestrians, cyclists, motorcyclists, among others. On the other hand, connected autonomous vehicles (CAVs) are a set of technologies that combines, on the one hand, communication technologies to stay always ubiquitous connected, and on the other hand, automated technologies to assist or replace the human driver during the driving process. Autonomous vehicles are being visualized as a viable alternative to solve road accidents providing a general safe environment for all the users on the road specifically to the most vulnerable. One of the problems facing autonomous vehicles is to generate mechanisms that facilitate their integration not only within the mobility environment, but also into the road society in a safe and efficient way. In this paper, we analyze and discuss how this integration can take place, reviewing the work that has been developed in recent years in each of the stages of the vehicle-human interaction, analyzing the challenges of vulnerable users and proposing solutions that contribute to solving these challenges.This work was partially funded by the Ministry of Economy, Industry, and Competitiveness of Spain under Grant: Supervision of drone fleet and optimization of commercial operations flight plans, PID2020-116377RB-C21.Peer ReviewedPostprint (published version

    Extended Object Tracking: Introduction, Overview and Applications

    Full text link
    This article provides an elaborate overview of current research in extended object tracking. We provide a clear definition of the extended object tracking problem and discuss its delimitation to other types of object tracking. Next, different aspects of extended object modelling are extensively discussed. Subsequently, we give a tutorial introduction to two basic and well used extended object tracking approaches - the random matrix approach and the Kalman filter-based approach for star-convex shapes. The next part treats the tracking of multiple extended objects and elaborates how the large number of feasible association hypotheses can be tackled using both Random Finite Set (RFS) and Non-RFS multi-object trackers. The article concludes with a summary of current applications, where four example applications involving camera, X-band radar, light detection and ranging (lidar), red-green-blue-depth (RGB-D) sensors are highlighted.Comment: 30 pages, 19 figure
    • …
    corecore