472 research outputs found

    Discriminative Feature Learning with Foreground Attention for Person Re-Identification

    Full text link
    The performance of person re-identification (Re-ID) has been seriously effected by the large cross-view appearance variations caused by mutual occlusions and background clutters. Hence learning a feature representation that can adaptively emphasize the foreground persons becomes very critical to solve the person Re-ID problem. In this paper, we propose a simple yet effective foreground attentive neural network (FANN) to learn a discriminative feature representation for person Re-ID, which can adaptively enhance the positive side of foreground and weaken the negative side of background. Specifically, a novel foreground attentive subnetwork is designed to drive the network's attention, in which a decoder network is used to reconstruct the binary mask by using a novel local regression loss function, and an encoder network is regularized by the decoder network to focus its attention on the foreground persons. The resulting feature maps of encoder network are further fed into the body part subnetwork and feature fusion subnetwork to learn discriminative features. Besides, a novel symmetric triplet loss function is introduced to supervise feature learning, in which the intra-class distance is minimized and the inter-class distance is maximized in each triplet unit, simultaneously. Training our FANN in a multi-task learning framework, a discriminative feature representation can be learned to find out the matched reference to each probe among various candidates in the gallery. Extensive experimental results on several public benchmark datasets are evaluated, which have shown clear improvements of our method over the state-of-the-art approaches

    Drop Loss for Person Attribute Recognition With Imbalanced Noisy-Labeled Samples

    Get PDF
    Person attribute recognition (PAR) aims to simultaneously predict multiple attributes of a person. Existing deep learning-based PAR methods have achieved impressive performance. Unfortunately, these methods usually ignore the fact that different attributes have an imbalance in the number of noisy-labeled samples in the PAR training datasets, thus leading to suboptimal performance. To address the above problem of imbalanced noisy-labeled samples, we propose a novel and effective loss called drop loss for PAR. In the drop loss, the attributes are treated differently in an easy-to-hard way. In particular, the noisy-labeled candidates, which are identified according to their gradient norms, are dropped with a higher drop rate for the harder attribute. Such a manner adaptively alleviates the adverse effect of imbalanced noisy-labeled samples on model learning. To illustrate the effectiveness of the proposed loss, we train a simple ResNet-50 model based on the drop loss and term it DropNet. Experimental results on two representative PAR tasks (including facial attribute recognition and pedestrian attribute recognition) demonstrate that the proposed DropNet achieves comparable or better performance in terms of both balanced accuracy and classification accuracy over several state-of-the-art PAR methods

    Efficient Clustering on Riemannian Manifolds: A Kernelised Random Projection Approach

    Get PDF
    Reformulating computer vision problems over Riemannian manifolds has demonstrated superior performance in various computer vision applications. This is because visual data often forms a special structure lying on a lower dimensional space embedded in a higher dimensional space. However, since these manifolds belong to non-Euclidean topological spaces, exploiting their structures is computationally expensive, especially when one considers the clustering analysis of massive amounts of data. To this end, we propose an efficient framework to address the clustering problem on Riemannian manifolds. This framework implements random projections for manifold points via kernel space, which can preserve the geometric structure of the original space, but is computationally efficient. Here, we introduce three methods that follow our framework. We then validate our framework on several computer vision applications by comparing against popular clustering methods on Riemannian manifolds. Experimental results demonstrate that our framework maintains the performance of the clustering whilst massively reducing computational complexity by over two orders of magnitude in some cases
    • …
    corecore