8,021 research outputs found

    Reduced Memory Region Based Deep Convolutional Neural Network Detection

    Get PDF
    Accurate pedestrian detection has a primary role in automotive safety: for example, by issuing warnings to the driver or acting actively on car's brakes, it helps decreasing the probability of injuries and human fatalities. In order to achieve very high accuracy, recent pedestrian detectors have been based on Convolutional Neural Networks (CNN). Unfortunately, such approaches require vast amounts of computational power and memory, preventing efficient implementations on embedded systems. This work proposes a CNN-based detector, adapting a general-purpose convolutional network to the task at hand. By thoroughly analyzing and optimizing each step of the detection pipeline, we develop an architecture that outperforms methods based on traditional image features and achieves an accuracy close to the state-of-the-art while having low computational complexity. Furthermore, the model is compressed in order to fit the tight constrains of low power devices with a limited amount of embedded memory available. This paper makes two main contributions: (1) it proves that a region based deep neural network can be finely tuned to achieve adequate accuracy for pedestrian detection (2) it achieves a very low memory usage without reducing detection accuracy on the Caltech Pedestrian dataset.Comment: IEEE 2016 ICCE-Berli

    Pedestrian classification on transfer learning based deep convolutional neural network for partial occlusion handling

    Get PDF
    The investigation of a deep neural network for pedestrian classification using transfer learning methods is proposed in this study. The development of deep convolutional neural networks has significantly improved the autonomous driver assistance system for pedestrian classification. However, the presence of partially occluded parts and the appearance variation under complex scenes are still robust to challenge in the pedestrian detection system. To address this problem, we proposed six transfer learning models: end-to-end convolutional neural network (CNN) model, scratch-trained residual network (ResNet50) model, and four transfer learning models: visual geometry group 16 (VGG16), GoogLeNet (InceptionV3), ResNet50, and MobileNet. The performance of the pedestrian classification was evaluated using four publicly datasets: Institut National de Recherche en Sciences et Technologies du Numérique (INRIA), Prince of Songkla University (PSU), CVC05, and Walailak University (WU) datasets. The experimental results show that six transfer learning models achieve classification accuracy of 65.2% (end-to-end CNN), 92.92% (scratch-trained ResNet50), 97.15% (pre-trained VGG16), 94.39% (pre-trained InceptionV3), 90.43% (pre-trained ResNet50), and 98.69% (pre-trained MobileNet) using data from Southern Thailand (PSU dataset). Further analysis reveals that the deeper the ConvNet architecture, the more specific information of features is provided. In addition, the deep ConvNet architecture can distinguish pedestrian occluded patterns while being trained with partially occluded parts of data samples

    Fusion of Multispectral Data Through Illumination-aware Deep Neural Networks for Pedestrian Detection

    Get PDF
    Multispectral pedestrian detection has received extensive attention in recent years as a promising solution to facilitate robust human target detection for around-the-clock applications (e.g. security surveillance and autonomous driving). In this paper, we demonstrate illumination information encoded in multispectral images can be utilized to significantly boost performance of pedestrian detection. A novel illumination-aware weighting mechanism is present to accurately depict illumination condition of a scene. Such illumination information is incorporated into two-stream deep convolutional neural networks to learn multispectral human-related features under different illumination conditions (daytime and nighttime). Moreover, we utilized illumination information together with multispectral data to generate more accurate semantic segmentation which are used to boost pedestrian detection accuracy. Putting all of the pieces together, we present a powerful framework for multispectral pedestrian detection based on multi-task learning of illumination-aware pedestrian detection and semantic segmentation. Our proposed method is trained end-to-end using a well-designed multi-task loss function and outperforms state-of-the-art approaches on KAIST multispectral pedestrian dataset

    Unsupervised Network Pretraining via Encoding Human Design

    Full text link
    Over the years, computer vision researchers have spent an immense amount of effort on designing image features for the visual object recognition task. We propose to incorporate this valuable experience to guide the task of training deep neural networks. Our idea is to pretrain the network through the task of replicating the process of hand-designed feature extraction. By learning to replicate the process, the neural network integrates previous research knowledge and learns to model visual objects in a way similar to the hand-designed features. In the succeeding finetuning step, it further learns object-specific representations from labeled data and this boosts its classification power. We pretrain two convolutional neural networks where one replicates the process of histogram of oriented gradients feature extraction, and the other replicates the process of region covariance feature extraction. After finetuning, we achieve substantially better performance than the baseline methods.Comment: 9 pages, 11 figures, WACV 2016: IEEE Conference on Applications of Computer Visio
    • …
    corecore