270 research outputs found

    Pedestrian detection and tracking using stereo vision techniques

    Get PDF
    Automated pedestrian detection, counting and tracking has received significant attention from the computer vision community of late. Many of the person detection techniques described so far in the literature work well in controlled environments, such as laboratory settings with a small number of people. This allows various assumptions to be made that simplify this complex problem. The performance of these techniques, however, tends to deteriorate when presented with unconstrained environments where pedestrian appearances, numbers, orientations, movements, occlusions and lighting conditions violate these convenient assumptions. Recently, 3D stereo information has been proposed as a technique to overcome some of these issues and to guide pedestrian detection. This thesis presents such an approach, whereby after obtaining robust 3D information via a novel disparity estimation technique, pedestrian detection is performed via a 3D point clustering process within a region-growing framework. This clustering process avoids using hard thresholds by using bio-metrically inspired constraints and a number of plan view statistics. This pedestrian detection technique requires no external training and is able to robustly handle challenging real-world unconstrained environments from various camera positions and orientations. In addition, this thesis presents a continuous detect-and-track approach, with additional kinematic constraints and explicit occlusion analysis, to obtain robust temporal tracking of pedestrians over time. These approaches are experimentally validated using challenging datasets consisting of both synthetic data and real-world sequences gathered from a number of environments. In each case, the techniques are evaluated using both 2D and 3D groundtruth methodologies

    Person Detection and Tracking Using Binocular Lucas-Kanade Feature Tracking and K-means Clustering

    Get PDF
    In this thesis, we present the design and implementation of a method for real-time person detection and tracking. Many current methods for detecting and tracking people rely on color contrast or movement to segment the image. Using color, however, requires the target and the background to be significantly different, and motion segmentation requires the target to be in constant motion relative to the background, often requiring stationary cameras. Pattern detection methods have also been applied to the problem of detecting pedestrians, but these approaches are slower and require stationary cameras to function. The method we present in this work does not require a color difference or constant motion to operate. We use Lucas-Kanade features to track feature points between left and right images, producing a sparse disparity map which is then segmented through the application of k-means clustering. We apply a Viola-Jones face detector to determine which, if any, of the resulting feature clusters represent a trackable person. This algorithm is tested using two identical standard cameras mounted on a mobile robot platform. Results are presented demonstrating detection and tracking of a person in several different situations, including partial occlusion and self-occlusion

    Semantic Mapping of Road Scenes

    Get PDF
    The problem of understanding road scenes has been on the fore-front in the computer vision community for the last couple of years. This enables autonomous systems to navigate and understand the surroundings in which it operates. It involves reconstructing the scene and estimating the objects present in it, such as ‘vehicles’, ‘road’, ‘pavements’ and ‘buildings’. This thesis focusses on these aspects and proposes solutions to address them. First, we propose a solution to generate a dense semantic map from multiple street-level images. This map can be imagined as the bird’s eye view of the region with associated semantic labels for ten’s of kilometres of street level data. We generate the overhead semantic view from street level images. This is in contrast to existing approaches using satellite/overhead imagery for classification of urban region, allowing us to produce a detailed semantic map for a large scale urban area. Then we describe a method to perform large scale dense 3D reconstruction of road scenes with associated semantic labels. Our method fuses the depth-maps in an online fashion, generated from the stereo pairs across time into a global 3D volume, in order to accommodate arbitrarily long image sequences. The object class labels estimated from the street level stereo image sequence are used to annotate the reconstructed volume. Then we exploit the scene structure in object class labelling by performing inference over the meshed representation of the scene. By performing labelling over the mesh we solve two issues: Firstly, images often have redundant information with multiple images describing the same scene. Solving these images separately is slow, where our method is approximately a magnitude faster in the inference stage compared to normal inference in the image domain. Secondly, often multiple images, even though they describe the same scene result in inconsistent labelling. By solving a single mesh, we remove the inconsistency of labelling across the images. Also our mesh based labelling takes into account of the object layout in the scene, which is often ambiguous in the image domain, thereby increasing the accuracy of object labelling. Finally, we perform labelling and structure computation through a hierarchical robust PN Markov Random Field defined on voxels and super-voxels given by an octree. This allows us to infer the 3D structure and the object-class labels in a principled manner, through bounded approximate minimisation of a well defined and studied energy functional. In this thesis, we also introduce two object labelled datasets created from real world data. The 15 kilometre Yotta Labelled dataset consists of 8,000 images per camera view of the roadways of the United Kingdom with a subset of them annotated with object class labels and the second dataset is comprised of ground truth object labels for the publicly available KITTI dataset. Both the datasets are available publicly and we hope will be helpful to the vision research community

    A Person Following Algorithm for Use with a Single Forward Facing RGB-D Camera on a Mobile Robot

    Get PDF
    This thesis examines the problem of person following. A person following algorithm can be separated into two distinct parts: the detection and tracking of a target and the actual following of a target. This thesis focuses mainly on the detection and tracking of a target person. For the purposes of this thesis a simple robot control architecture is used. The robot moves to follow the target in a straight line. No path planning is considered when executing robot movement. This thesis aims to accomplish three tasks. First, the system should be able to track and follow a target when no occlusions occur. The non-occlusion scenarios should consider the target in environments with no other people, environments with other people present at different distances, and environments with other people present at similar distances. The second goal will be to track the target person through brief occlusions. The system should be able to detect when the target has been occluded, register the occlusion, and reacquire the target upon completion of the occlusion. The third and final goal of this thesis is to reacquire the target after a long term occlusion. The system must recognize that the target person has disappeared from the scene, wait for the target to reappear, and reacquire the target upon reappearance. These goals will be accomplished using a generic person detector realized by a HOG person detector, a specific appearance model based on color histograms, a particle filter that will serve as an integrating structure for the tracker, and a simplistic robot control architecture. In the following chapters I will discuss the motivation behind this work, previous research done in this area, the methods used in this thesis and the theory behind them. Experimental results will then be analyzed and discussion concerning the results and possible improvements to the system will be presented

    Compact Environment Modelling from Unconstrained Camera Platforms

    Get PDF
    Mobile robotic systems need to perceive their surroundings in order to act independently. In this work a perception framework is developed which interprets the data of a binocular camera in order to transform it into a compact, expressive model of the environment. This model enables a mobile system to move in a targeted way and interact with its surroundings. It is shown how the developed methods also provide a solid basis for technical assistive aids for visually impaired people

    Pose Estimation and Segmentation of Multiple People in Stereoscopic Movies

    Get PDF
    International audienceWe describe a method to obtain a pixel-wise segmentation and pose estimation of multiple people in stereoscopic videos. This task involves challenges such as dealing with unconstrained stereoscopic video, non-stationary cameras, and complex indoor and outdoor dynamic scenes with multiple people. We cast the problem as a discrete labelling task involving multiple person labels, devise a suitable cost function, and optimize it efficiently. The contributions of our work are two-fold: First, we develop a segmentation model incorporating person detections and learnt articulated pose segmentation masks, as well as colour, motion, and stereo disparity cues. The model also explicitly represents depth ordering and occlusion. Second, we introduce a stereoscopic dataset with frames extracted from feature-length movies "StreetDance 3D" and "Pina". The dataset contains 587 annotated human poses, 1158 bounding box annotations and 686 pixel-wise segmentations of people. The dataset is composed of indoor and outdoor scenes depicting multiple people with frequent occlusions. We demonstrate results on our new challenging dataset, as well as on the H2view dataset from (Sheasby et al. ACCV 2012)

    Doctor of Philosophy

    Get PDF
    dissertation3D reconstruction from image pairs relies on finding corresponding points between images and using the corresponding points to estimate a dense disparity map. Today's correspondence-finding algorithms primarily use image features or pixel intensities common between image pairs. Some 3D computer vision applications, however, don't produce the desired results using correspondences derived from image features or pixel intensities. Two examples are the multimodal camera rig and the center region of a coaxial camera rig. Additionally, traditional stereo correspondence-finding techniques which use image features or pixel intensities sometimes produce inaccurate results. This thesis presents a novel image correspondence-finding technique that aligns pairs of image sequences using the optical flow fields. The optical flow fields provide information about the structure and motion of the scene which is not available in still images, but which can be used to align images taken from different camera positions. The method applies to applications where there is inherent motion between the camera rig and the scene and where the scene has enough visual texture to produce optical flow. We apply the technique to a traditional binocular stereo rig consisting of an RGB/IR camera pair and to a coaxial camera rig. We present results for synthetic flow fields and for real images sequences with accuracy metrics and reconstructed depth maps
    • 

    corecore