9 research outputs found

    Pectus Excavatum postsurgical outcome based on preoperative soft body dynamics simulation

    Get PDF
    Pectus excavatum is the most common congenital deformity of the anterior chest wall, in which an abnormal formation of the rib cage gives the chest a caved-in or sunken appearance. Today, the surgical correction of this deformity is carried out in children and adults through Nuss technic, which consists in the placement of a prosthetic bar under the sternum and over the ribs. Alth ough this technique has been shown to be safe and reliable, not all patients have achieved adequate cosmetic outcome. This often leads to psyc hological problems and social stress, before and after the surgical correction. This paper targets this particular problem by presenting a method to predict the patient surgical outcome based on pre-surgical imagiologic information and chest skin dynamic modulation. The proposed approach uses the patient pre-surgical thoracic CT scan and anatomical-surg ical references to perform a 3D segmentation of the left ribs, right ribs, sternum and skin. The technique encompasses three steps: a) approximation of the cartilages, between the ribs and the sternum, trough b-spline interpolation; b) a volu metric mass spring model that connects two layers - inner skin layer based on the outer pleura contour and the outer su rface skin; and c) displacement of the sternum according to the prosthetic bar position. A dynamic model of the skin around the chest wall region was generated, capable of simulating the effect of the movement of the prosthetic bar along the sternum. The results were compared and validated with patient postsurgical skin surface acquired with Polhemus FastSCAN system.Fundação para a Ciência e Tecnologi

    Patient-specific outcome simulation after surgical correction of Pectus Excavatum: a preliminary study

    Get PDF
    Although minimally invasive Nuss procedure is frequently performed to correct Pectus Excavatum, the successful aesthetical outcome is not always ensured. Using the computed tomography (CT) data of six patients, high-quality surfaces of the anterior chest wall were generated, alongside with a personalized corrective-bar. Through finite element method (FEM), replicating the surgical procedure, a simulation of the anterior chest wall correction was conducted. The assessment of this methodology was verified by comparing the metrics from the real meshes (3D scanned before and after surgery) and simulated meshes (obtained before and after FEM). Results show a mean difference of 2.85 +/- 5.77 mm on the point of maximum correction between simulated and real outcomes. No statistical differences were found (p = 0.281). High aesthetical similarity was observed concerning simulated and real outcomes. The proposed methodology presents a patient-specific simulation that may be used to plan, predict and improve the surgical outcome of the Nuss procedure. Further studies should continue to improve the presented methodology.This work has been funded by FEDER funds, through the Competitiveness Factors Operational Programme (COMPETE), and by National funds, through the Foundation for Science and Technology (FCT), under the scope of the projects POCI-01-0145-FEDER-007038; NORTE-01-0145-FEDER-000013; and NORTE-01-0145-FEDER-024300, supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER). Joao Gomes-Fonseca was funded by FCT under the Ph.D. grant PD/BDE/113597/2015

    Development and Validation Methodology of the Nuss Procedure Surgical Planner

    Get PDF
    Pectus excavatum (PE) is a congenital chest wall deformity which is characterized, in most cases, by a deep depression of the sternum. A minimally invasive technique for the repair of PE (MIRPE), often referred to as the Nuss procedure, has been proven to be more advantageous than many other PE treatment techniques. The Nuss procedure consists of placement of a metal bar(s) underneath the sternum, thereby forcibly changing the geometry of the ribcage. Because of the prevalence of PE and the popularity of the Nuss procedure, the demand to perform this surgery is greater than ever. Therefore, a Nuss procedure surgical planner would be an invaluable planning tool ensuring an optimal physiological and aesthetic outcome. In this dissertation, the development and validation of the Nuss procedure planner is investigated. First, a generic model of the ribcage is developed to overcome the issue of missing cartilage when PE ribcages are segmented and facilitate the flexibility of the model to accommodate a range of deformity. Then, the CT data collected from actual patients with PE is used to create a set of patient specific finite element models. Based on finite element analyses performed over those models, a set force-displacement data set is created. This data is used to train an artificial neural network to generalize the data set. In order to evaluate the planning process, a methodology which uses an average shape of the chest for comparison with results of the Nuss procedure planner is developed. This method is based on a sample of normal chests obtained from the ODU male population using laser surface scanning and overcomes challenging issues such as hole-filling, scan registration and consistency. Additionally, this planning simulator is optimized so that it can be used for training purposes. Haptic feedback and inertial tracking is implemented, and the force-displacement model is approximated using a neural network approach and evaluated for real-time performance. The results show that it is possible to utilize this approximation of the force-displacement model for the Nuss procedure simulator. The detailed ribcage model achieves real-time performance

    Automatic 3D extraction of pleural plaques and diffuse pleural thickening from lung MDCT images

    Full text link
    Pleural plaques (PPs) and diffuse pleural thickening (DPT) are very common asbestos related pleural diseases (ARPD). They are currently identified non-invasively using medical imaging techniques. A fully automatic algorithm for 3D detection of calcified pleura in the diaphragmatic area and thickened pleura on the costal surfaces from multi detector computed tomography (MDCT) images has been developed and tested. The algorithm for detecting diaphragmatic pleura includes estimation of the diaphragm top surface in 3D and identifying those voxels at a certain vertical distance from the estimated diaphragm, and with intensities close to that of bone, as calcified pleura. The algorithm for detecting thickened pleura on the costal surfaces includes: estimation of the pleural costal surface in 3D, estimation of the centrelines of ribs and costal cartilages and the surfaces that they lie on, calculating the mean distance between the two surfaces, and identifying any space between the two surfaces whose distance exceeds the mean distance as thickened pleura. The accuracy and performance of the proposed algorithm was tested on 20 MDCT datasets from patients diagnosed with existing PPs and/or DPT and the results were compared against the ground truth provided by an experienced radiologist. Several metrics were employed and evaluations indicate high performance of both calcified pleura detection in the diaphragmatic area and thickened pleura on the costal surfaces. This work has made significant contributions to both medical image analysis and medicine. For the first time in medical image analysis, the approach uses other stable organs such as the ribs and costal cartilage, besides the lungs themselves, for referencing and landmarking in 3D. It also estimates fat thickness between the rib surface and pleura (which is usually very thin) and excludes it from the detected areas, when identifying the thickened pleura. It also distinguishes the calcified pleura attached to the rib(s), separates them in 3D and detects calcified pleura on the lung diaphragmatic surfaces. The key contribution to medicine is effective detection of pleural thickening of any size and recognition of any changes, however small. This could have a significant impact on managing patient risks

    Advanced Applications of Rapid Prototyping Technology in Modern Engineering

    Get PDF
    Rapid prototyping (RP) technology has been widely known and appreciated due to its flexible and customized manufacturing capabilities. The widely studied RP techniques include stereolithography apparatus (SLA), selective laser sintering (SLS), three-dimensional printing (3DP), fused deposition modeling (FDM), 3D plotting, solid ground curing (SGC), multiphase jet solidification (MJS), laminated object manufacturing (LOM). Different techniques are associated with different materials and/or processing principles and thus are devoted to specific applications. RP technology has no longer been only for prototype building rather has been extended for real industrial manufacturing solutions. Today, the RP technology has contributed to almost all engineering areas that include mechanical, materials, industrial, aerospace, electrical and most recently biomedical engineering. This book aims to present the advanced development of RP technologies in various engineering areas as the solutions to the real world engineering problems

    Pain Management

    Get PDF
    Pain Management - Current Issues and Opinions is written by international experts who cover a number of topics about current pain management problems, and gives the reader a glimpse into the future of pain treatment. Several chapters report original research, while others summarize clinical information with specific treatment options. The international mix of authors reflects the "casting of a broad net" to recruit authors on the cutting edge of their area of interest. Pain Management - Current Issues and Opinions is a must read for the up-to-date pain clinician

    A Systematic Review and Meta-Analysis of the Incidence of Injury in Professional Female Soccer

    Get PDF
    The epidemiology of injury in male professional football is well documented and has been used as a basis to monitor injury trends and implement injury prevention strategies. There are no systematic reviews that have investigated injury incidence in women’s professional football. Therefore, the extent of injury burden in women’s professional football remains unknown. PURPOSE: The primary aim of this study was to calculate an overall incidence rate of injury in senior female professional soccer. The secondary aims were to provide an incidence rate for training and match play. METHODS: PubMed, Discover, EBSCO, Embase and ScienceDirect electronic databases were searched from inception to September 2018. Two reviewers independently assessed study quality using the Strengthening the Reporting of Observational Studies in Epidemiology statement using a 22-item STROBE checklist. Seven prospective studies (n=1137 professional players) were combined in a pooled analysis of injury incidence using a mixed effects model. Heterogeneity was evaluated using the Cochrane Q statistic and I2. RESULTS: The epidemiological incidence proportion over one season was 0.62 (95% CI 0.59 - 0.64). Mean total incidence of injury was 3.15 (95% CI 1.54 - 4.75) injuries per 1000 hours. The mean incidence of injury during match play was 10.72 (95% CI 9.11 - 12.33) and during training was 2.21 (95% CI 0.96 - 3.45). Data analysis found a significant level of heterogeneity (total Incidence, X2 = 16.57 P < 0.05; I2 = 63.8%) and during subsequent sub group analyses in those studies reviewed (match incidence, X2 = 76.4 (d.f. = 7), P <0.05; I2 = 90.8%, training incidence, X2 = 16.97 (d.f. = 7), P < 0.05; I2 = 58.8%). Appraisal of the study methodologies revealed inconsistency in the use of injury terminology, data collection procedures and calculation of exposure by researchers. Such inconsistencies likely contribute to the large variance in the incidence and prevalence of injury reported. CONCLUSIONS: The estimated risk of sustaining at least one injury over one football season is 62%. Continued reporting of heterogeneous results in population samples limits meaningful comparison of studies. Standardising the criteria used to attribute injury and activity coupled with more accurate methods of calculating exposure will overcome such limitations
    corecore