793 research outputs found

    Pebbling, Entropy and Branching Program Size Lower Bounds

    Get PDF
    We contribute to the program of proving lower bounds on the size of branching programs solving the Tree Evaluation Problem introduced by Cook et. al. (2012). Proving a super-polynomial lower bound for the size of nondeterministic thrifty branching programs (NTBP) would separate NLNL from PP for thrifty models solving the tree evaluation problem. First, we show that {\em Read-Once NTBPs} are equivalent to whole black-white pebbling algorithms thus showing a tight lower bound (ignoring polynomial factors) for this model. We then introduce a weaker restriction of NTBPs called {\em Bitwise Independence}. The best known NTBPs (of size O(kh/2+1)O(k^{h/2+1})) for the tree evaluation problem given by Cook et. al. (2012) are Bitwise Independent. As our main result, we show that any Bitwise Independent NTBP solving TEP2h(k)TEP_{2}^{h}(k) must have at least 12kh/2\frac{1}{2}k^{h/2} states. Prior to this work, lower bounds were known for NTBPs only for fixed heights h=2,3,4h=2,3,4 (See Cook et. al. (2012)). We prove our results by associating a fractional black-white pebbling strategy with any bitwise independent NTBP solving the Tree Evaluation Problem. Such a connection was not known previously even for fixed heights. Our main technique is the entropy method introduced by Jukna and Z{\'a}k (2001) originally in the context of proving lower bounds for read-once branching programs. We also show that the previous lower bounds given by Cook et. al. (2012) for deterministic branching programs for Tree Evaluation Problem can be obtained using this approach. Using this method, we also show tight lower bounds for any kk-way deterministic branching program solving Tree Evaluation Problem when the instances are restricted to have the same group operation in all internal nodes.Comment: 25 Pages, Manuscript submitted to Journal in June 2013 This version includes a proof for tight size bounds for (syntactic) read-once NTBPs. The proof is in the same spirit as the proof for size bounds for bitwise independent NTBPs present in the earlier version of the paper and is included in the journal version of the paper submitted in June 201

    Pebbling Arguments for Tree Evaluation

    Full text link
    The Tree Evaluation Problem was introduced by Cook et al. in 2010 as a candidate for separating P from L and NL. The most general space lower bounds known for the Tree Evaluation Problem require a semantic restriction on the branching programs and use a connection to well-known pebble games to generate a bottleneck argument. These bounds are met by corresponding upper bounds generated by natural implementations of optimal pebbling algorithms. In this paper we extend these ideas to a variety of restricted families of both deterministic and non-deterministic branching programs, proving tight lower bounds under these restricted models. We also survey and unify known lower bounds in our "pebbling argument" framework

    Pebbling and Branching Programs Solving the Tree Evaluation Problem

    Full text link
    We study restricted computation models related to the Tree Evaluation Problem}. The TEP was introduced in earlier work as a simple candidate for the (*very*) long term goal of separating L and LogDCFL. The input to the problem is a rooted, balanced binary tree of height h, whose internal nodes are labeled with binary functions on [k] = {1,...,k} (each given simply as a list of k^2 elements of [k]), and whose leaves are labeled with elements of [k]. Each node obtains a value in [k] equal to its binary function applied to the values of its children, and the output is the value of the root. The first restricted computation model, called Fractional Pebbling, is a generalization of the black/white pebbling game on graphs, and arises in a natural way from the search for good upper bounds on the size of nondeterministic branching programs (BPs) solving the TEP - for any fixed h, if the binary tree of height h has fractional pebbling cost at most p, then there are nondeterministic BPs of size O(k^p) solving the height h TEP. We prove a lower bound on the fractional pebbling cost of d-ary trees that is tight to within an additive constant for each fixed d. The second restricted computation model we study is a semantic restriction on (non)deterministic BPs solving the TEP - Thrifty BPs. Deterministic (resp. nondeterministic) thrifty BPs suffice to implement the best known algorithms for the TEP, based on black (resp. fractional) pebbling. In earlier work, for each fixed h a lower bound on the size of deterministic thrifty BPs was proved that is tight for sufficiently large k. We give an alternative proof that achieves the same bound for all k. We show the same bound still holds in a less-restricted model, and also that gradually weaker lower bounds can be obtained for gradually weaker restrictions on the model.Comment: Written as one of the requirements for my MSc. 29 pages, 6 figure

    Hardness of Function Composition for Semantic Read once Branching Programs

    Get PDF
    In this work, we study time/space trade-offs for function composition. We prove asymptotically optimal lower bounds for function composition in the setting of nondeterministic read once branching programs, for the syntactic model as well as the stronger semantic model of read-once nondeterministic computation. We prove that such branching programs for solving the tree evaluation problem over an alphabet of size k requires size roughly k^{Omega(h)}, i.e space Omega(h log k). Our lower bound nearly matches the natural upper bound which follows the best strategy for black-white pebbling the underlying tree. While previous super-polynomial lower bounds have been proven for read-once nondeterministic branching programs (for both the syntactic as well as the semantic models), we give the first lower bounds for iterated function composition, and in these models our lower bounds are near optimal

    On the Expressive Power of Hybrid Branching-Time Logics

    Get PDF
    Hybrid branching-time logics are a powerful extension of branching-time logics like CTL, CTL^* or even the modal mu-calculus through the addition of binders, jumps and variable tests. Their expressiveness is not restricted by bisimulation-invariance anymore. Hence, they do not retain the tree model property, and the finite model property is equally lost. Their satisfiability problems are typically undecidable, their model checking problems (on finite models) are decidable with complexities ranging from polynomial to non-elementary time. In this paper we study the expressive power of such hybrid branching-time logics beyond some earlier results about their invariance under hybrid bisimulations. In particular, we aim to extend the hierarchy of non-hybrid branching-time logics CTL, CTL^+, CTL^* and the modal mu-calculus to their hybrid extensions. We show that most separation results can be transferred to the hybrid world, even though the required techniques become a bit more involved. We also present some collapse results for restricted classes of models that are especially worth investigating, namely linear, tree-shaped and finite models

    Fractional Pebbling and Thrifty Branching Programs

    Get PDF
    We study the branching program complexity of the {em tree evaluation problem}, introduced in cite{BrCoMcSaWe09} as a candidate for separating nl fromlogcfl. The input to the problem is a rooted, balanced dd-ary tree of heighthh, whose internal nodes are labelled with dd-ary functions on[k]=1,ldots,k[k]={1,ldots,k}, and whose leaves are labelled with elements of [k][k].Each node obtains a value in [k][k] equal to its dd-ary function applied to the values of its dd children. The output is the value of the root. Deterministic kk-way branching programs as related to black pebbling algorithms have been studied in cite{BrCoMcSaWe09}. Here we introduce the notion of {em fractional pebbling} of graphs to study non-deterministicbranching program size. We prove that this yields non-deterministic branching programs with Theta(kh/2+1)Theta(k^{h/2+1}) states solving the Boolean problem ``determine whether the root has value 1\u27\u27 for binary trees - this isasymptotically better than the branching program size corresponding toblack-white pebbling. We prove upper and lower bounds on the fractionalpebbling number of dd-ary trees, as well as a general result relating thefractional pebbling number of a graph to the black-white pebbling number. We introduce a simple semantic restriction called {em thrifty} on kk-way branching programs solving tree evaluation problems and show that the branchingprogram size bound of Theta(kh)Theta(k^h) is tight (up to a constant factor) for all hge2hge 2 for deterministic thrifty programs. We show that thenon-deterministic branching programs that correspond to fractional pebbling are thrifty as well, and that the bound of Theta(kh/2+1)Theta(k^{h/2+1}) is tight for non-deterministic thrifty programs for h=2,3,4h=2,3,4. We hypothesise that thrifty branching programs are optimal among kk-way branching programs solving the tree evaluation problem - proving this for deterministic programs would separate lspace from logcfl, and proving it for non-deterministic programs would separate nl from logcfl

    Cumulative Memory Lower Bounds for Randomized and Quantum Computation

    Get PDF
    Cumulative memory -- the sum of space used per step over the duration of a computation -- is a fine-grained measure of time-space complexity that was introduced to analyze cryptographic applications like password hashing. It is a more accurate cost measure for algorithms that have infrequent spikes in memory usage and are run in environments such as cloud computing that allow dynamic allocation and de-allocation of resources during execution, or when many multiple instances of an algorithm are interleaved in parallel. We prove the first lower bounds on cumulative memory complexity for both sequential classical computation and quantum circuits. Moreover, we develop general paradigms for bounding cumulative memory complexity inspired by the standard paradigms for proving time-space tradeoff lower bounds that can only lower bound the maximum space used during an execution. The resulting lower bounds on cumulative memory that we obtain are just as strong as the best time-space tradeoff lower bounds, which are very often known to be tight. Although previous results for pebbling and random oracle models have yielded time-space tradeoff lower bounds larger than the cumulative memory complexity, our results show that in general computational models such separations cannot follow from known lower bound techniques and are not true for many functions. Among many possible applications of our general methods, we show that any classical sorting algorithm with success probability at least 1/poly(n)1/\text{poly}(n) requires cumulative memory Ω~(n2)\tilde \Omega(n^2), any classical matrix multiplication algorithm requires cumulative memory Ω(n6/T)\Omega(n^6/T), any quantum sorting circuit requires cumulative memory Ω(n3/T)\Omega(n^3/T), and any quantum circuit that finds kk disjoint collisions in a random function requires cumulative memory Ω(k3n/T2)\Omega(k^3n/T^2).Comment: 42 pages, 4 figures, accepted to track A of ICALP 202
    • …
    corecore