90,113 research outputs found

    Improving the Spectral Efficiency of Nonlinear Satellite Systems through Time-Frequency Packing and Advanced Processing

    Full text link
    We consider realistic satellite communications systems for broadband and broadcasting applications, based on frequency-division-multiplexed linear modulations, where spectral efficiency is one of the main figures of merit. For these systems, we investigate their ultimate performance limits by using a framework to compute the spectral efficiency when suboptimal receivers are adopted and evaluating the performance improvements that can be obtained through the adoption of the time-frequency packing technique. Our analysis reveals that introducing controlled interference can significantly increase the efficiency of these systems. Moreover, if a receiver which is able to account for the interference and the nonlinear impairments is adopted, rather than a classical predistorter at the transmitter coupled with a simpler receiver, the benefits in terms of spectral efficiency can be even larger. Finally, we consider practical coded schemes and show the potential advantages of the optimized signaling formats when combined with iterative detection/decoding.Comment: 8 pages, 8 figure

    Design guidelines for spatial modulation

    No full text
    A new class of low-complexity, yet energyefficient Multiple-Input Multiple-Output (MIMO) transmission techniques, namely the family of Spatial Modulation (SM) aided MIMOs (SM-MIMO) has emerged. These systems are capable of exploiting the spatial dimensions (i.e. the antenna indices) as an additional dimension invoked for transmitting information, apart from the traditional Amplitude and Phase Modulation (APM). SM is capable of efficiently operating in diverse MIMO configurations in the context of future communication systems. It constitutes a promising transmission candidate for large-scale MIMO design and for the indoor optical wireless communication whilst relying on a single-Radio Frequency (RF) chain. Moreover, SM may also be viewed as an entirely new hybrid modulation scheme, which is still in its infancy. This paper aims for providing a general survey of the SM design framework as well as of its intrinsic limits. In particular, we focus our attention on the associated transceiver design, on spatial constellation optimization, on link adaptation techniques, on distributed/ cooperative protocol design issues, and on their meritorious variants

    Complementary weak-value amplification with concatenated postselections

    Get PDF
    We measure a transverse momentum kick in a Sagnac interferometer using weak-value amplification with two postselections. The first postselection is controlled by a polarization dependent phase mismatch between both paths of a Sagnac interferometer and the second postselection is controlled by a polarizer at the exit port. By monitoring the darkport of the interferometer, we study the complementary amplification of the concatenated postselections, where the polarization extinction ratio is greater than the contrast of the spatial interference. In this case, we find an improvement in the amplification of the signal of interest by introducing a second postselection to the system

    Study of radar pulse compression for high resolution satellite altimetry

    Get PDF
    Pulse compression techniques are studied which are applicable to a satellite altimeter having a topographic resolution of + 10 cm. A systematic design procedure is used to determine the system parameters. The performance of an optimum, maximum likelihood processor is analysed, which provides the basis for modifying the standard split-gate tracker to achieve improved performance. Bandwidth considerations lead to the recommendation of a full deramp STRETCH pulse compression technique followed by an analog filter bank to separate range returns. The implementation of the recommended technique is examined

    Optimization in the design of a 12 gigahertz low cost ground receiving system for broadcast satellites. Volume 2: Antenna system and interference

    Get PDF
    The antenna characteristics are analyzed of a low cost mass-producible ground station to be used in broadcast satellite systems. It is found that a prime focus antenna is sufficient for a low-cost but not a low noise system. For the antenna feed waveguide systems are the best choice for the 12 GHz band, while printed-element systems are recommended for the 2.6 GHz band. Zoned reflectors are analyzed and appear to be attractive from the standpoint of cost. However, these reflectors suffer a gain reduction of about one db and a possible increase in sidelobe levels. The off-axis gain of a non-auto-tracking station can be optimized by establishing a special illumination function at the reflector aperture. A step-feed tracking system is proposed to provide automatic procedures for searching for peak signal from a geostationary satellite. This system uses integrated circuitry and therefore results in cost saving under mass production. It is estimated that a complete step-track system would cost only $512 for a production quantity of 1000 units per year

    Distributed quantum sensing in a continuous variable entangled network

    Full text link
    Networking plays a ubiquitous role in quantum technology. It is an integral part of quantum communication and has significant potential for upscaling quantum computer technologies that are otherwise not scalable. Recently, it was realized that sensing of multiple spatially distributed parameters may also benefit from an entangled quantum network. Here we experimentally demonstrate how sensing of an averaged phase shift among four distributed nodes benefits from an entangled quantum network. Using a four-mode entangled continuous variable (CV) state, we demonstrate deterministic quantum phase sensing with a precision beyond what is attainable with separable probes. The techniques behind this result can have direct applications in a number of primitives ranging from biological imaging to quantum networks of atomic clocks
    corecore