915 research outputs found

    Amplitude and Sign Adjustment for Peak-to-Average-Power Reduction

    Get PDF
    In this letter, we propose a method to reduce the peak-to-mean-envelope-power ratio (PMEPR) of multicarrier signals by modifying the constellation. ForMM-ary phase-shift keying constellations, we minimize the maximum of the multicarrier signal over the sign and amplitude of each subcarrier. In order to find an efficient solution to the aforementioned nonconvex optimization problem, we present a suboptimal solution by first optimizing over the signs, and then optimizing over the amplitudes given the signs. We prove that the minimization of the maximum of a continuous multicarrier signal over the amplitude of each subcarrier can be written as a convex optimization problem with linear matrix inequality constraints. We also generalize the idea to other constellations such as 16-quadrature amplitude modulation. Simulation results show that by an average power increase of 0.21 dB, and not sending information over the sign of each subcarrier, PMEPR can be decreased by 5.1 dB for a system with 128 subcarriers

    Peak to average power reduction using amplitude and sign adjustment

    Get PDF
    In this paper, we propose a method to reduce the peak to mean envelope power ratio (PMEPR) of multicarrier signals by modifying the constellation. For MPSK constellations, we minimize the maximum of the multicarrier signal over the sign and amplitude of each subcarrier. In order to find an efficient solution to the aforementioned non-convex optimization problem, we present a suboptimal solution by first optimizing over the signs using the result of [1], and then optimizing over the amplitudes given the signs. We prove that the minimization of the maximum of a multicarrier signal over the amplitude of each subcarrier can be written as a convex optimization problem with linear matrix inequality constraints. We also generalize the idea to other constellations such as 16QAM. Simulation results show that by an average power increase of 0.21 db and not sending information over the sign of each subcarrier, PMEPR can be decreased by 5.1 db for a system with 128 subcarriers

    A Generalized Construction of OFDM M-QAM Sequences With Low Peak-to-Average Power Ratio

    Full text link
    A construction of 22n2^{2n}-QAM sequences is given and an upper bound of the peak-to-mean envelope power ratio (PMEPR) is determined. Some former works can be viewed as special cases of this construction.Comment: published by Advances in Mathematics of Communication

    Multicarrier modulation with variable peak‐to‐average power ratio using partial fast Fourier transform

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/166180/1/cmu2bf01398.pd

    On PAPR Reduction of OFDM using Partial Transmit Sequence with Intelligent Optimization Algorithms

    Get PDF
    In recent time, the demand for multimedia data services over wireless links has grown up rapidly. Orthogonal Frequency Division Multiplexing (OFDM) forms the basis for all 3G and beyond wireless communication standards due to its efficient frequency utilization permitting near ideal data rate and ubiquitous coverage with high mobility. OFDM signals are prone to high peak-to-average-power ratio (PAPR). Unfortunately, the high PAPR inherent to OFDM signal envelopes occasionally drives high power amplifiers (HPAs) to operate in the nonlinear region of their characteristic leading out-of-band radiation, reduction in efficiency of communication system etc. A plethora of research has been devoted to reducing the performance degradation due to the PAPR problem inherent to OFDM systems. Advanced techniques such as partial transmit sequences (PTS) and selected mapping (SLM) have been considered most promising for PAPR reduction. Such techniques are seen to be efficient for distortion-less signal processing but suffer from computational complexity and often requires transmission of extra information in terms of several side information (SI) bits leading to loss in effective data rate. This thesis investigates the PAPR problem using Partial Transmit Sequence (PTS) scheme, where optimization is achieved with evolutionary bio-inspired metaheuristic stochastic algorithms. The phase factor optimization in PTS is used for PAPR reduction. At first, swarm intelligence based Firefly PTS (FF-PTS) algorithm is proposed which delivers improved PAPR performance with reduced searching complexity. Following this, Cuckoo Search based PTS (CS-PTS) technique is presented, which offers good PAPR performance in terms of solution quality and convergence speed. Lastly, Improved Harmony search based PTS (IHS-PTS) is introduced, which provides improved PAPR. The algorithm has simple structure with a very few parameters for larger PTS sub-blocks. The PAPR performance of the proposed technique with different parameters is also verified through extensive computer simulations. Furthermore, complexity analysis of algorithms demonstrates that the proposed schemes offer significant complexity reduction when compared to standard PAPR reduction techniques. Findings have been validated through extensive simulation tests

    Interference-Mitigating Waveform Design for Next-Generation Wireless Systems

    No full text
    A brief historical perspective of the evolution of waveform designs employed in consecutive generations of wireless communications systems is provided, highlighting the range of often conflicting demands on the various waveform characteristics. As the culmination of recent advances in the field the underlying benefits of various Multiple Input Multiple Output (MIMO) schemes are highlighted and exemplified. As an integral part of the appropriate waveform design, cognizance is given to the particular choice of the duplexing scheme used for supporting full-duplex communications and it is demonstrated that Time Division Duplexing (TDD) is substantially outperformed by Frequency Division Duplexing (FDD), unless the TDD scheme is combined with further sophisticated scheduling, MIMOs and/or adaptive modulation/coding. It is also argued that the specific choice of the Direct-Sequence (DS) spreading codes invoked in DS-CDMA predetermines the properties of the system. It is demonstrated that a specifically designed family of spreading codes exhibits a so-called interference-free window (IFW) and hence the resultant system is capable of outperforming its standardised counterpart employing classic Orthogonal Variable Spreading Factor (OVSF) codes under realistic dispersive channel conditions, provided that the interfering multi-user and multipath components arrive within this IFW. This condition may be ensured with the aid of quasisynchronous adaptive timing advance control. However, a limitation of the system is that the number of spreading codes exhibiting a certain IFW is limited, although this problem may be mitigated with the aid of novel code design principles, employing a combination of several spreading sequences in the time-frequency and spatial-domain. The paper is concluded by quantifying the achievable user load of a UTRA-like TDD Code Division Multiple Access (CDMA) system employing Loosely Synchronized (LS) spreading codes exhibiting an IFW in comparison to that of its counterpart using OVSF codes. Both system's performance is enhanced using beamforming MIMOs
    corecore