26,779 research outputs found

    Knowledge-infused and Consistent Complex Event Processing over Real-time and Persistent Streams

    Full text link
    Emerging applications in Internet of Things (IoT) and Cyber-Physical Systems (CPS) present novel challenges to Big Data platforms for performing online analytics. Ubiquitous sensors from IoT deployments are able to generate data streams at high velocity, that include information from a variety of domains, and accumulate to large volumes on disk. Complex Event Processing (CEP) is recognized as an important real-time computing paradigm for analyzing continuous data streams. However, existing work on CEP is largely limited to relational query processing, exposing two distinctive gaps for query specification and execution: (1) infusing the relational query model with higher level knowledge semantics, and (2) seamless query evaluation across temporal spaces that span past, present and future events. These allow accessible analytics over data streams having properties from different disciplines, and help span the velocity (real-time) and volume (persistent) dimensions. In this article, we introduce a Knowledge-infused CEP (X-CEP) framework that provides domain-aware knowledge query constructs along with temporal operators that allow end-to-end queries to span across real-time and persistent streams. We translate this query model to efficient query execution over online and offline data streams, proposing several optimizations to mitigate the overheads introduced by evaluating semantic predicates and in accessing high-volume historic data streams. The proposed X-CEP query model and execution approaches are implemented in our prototype semantic CEP engine, SCEPter. We validate our query model using domain-aware CEP queries from a real-world Smart Power Grid application, and experimentally analyze the benefits of our optimizations for executing these queries, using event streams from a campus-microgrid IoT deployment.Comment: 34 pages, 16 figures, accepted in Future Generation Computer Systems, October 27, 201

    Spectra and Light Curves of Failed Supernovae

    Full text link
    Astronomers have proposed a number of mechanisms to produce supernova explosions. Although many of these mechanisms are now not considered primary engines behind supernovae, they do produce transients that will be observed by upcoming ground-based surveys and NASA satellites. Here we present the first radiation-hydrodynamics calculations of the spectra and light curves from three of these "failed" supernovae: supernovae with considerable fallback, accretion induced collapse of white dwarfs, and energetic helium flashes (also known as type .Ia supernovae).Comment: 33 pages, 14 figure

    Enhancing aeropropulsion research with high-speed interactive computing

    Get PDF
    NASA-Lewis has committed to a long range goal of creating a numerical test cell for aeropropulsion research and development. Efforts are underway to develop a first generation Numerical Propulsion System Simulation (NPSS). The NPSS will provide a unique capability to numerically simulate advanced propulsion systems from nose to tail. Two essential ingredients to the NPSS are: (1) experimentally validated Computational Fluid Dynamics (CFD) codes; and (2) high performing computing systems (hardware and software) that will permit those codes to be used efficiently. To this end, NASA-Lewis is using high speed, interactive computing as a means for achieving Integrated CFD and Experiments (ICE). The development is described of a prototype ICE system for multistage compressor flow physics research

    Heat transfer in premixed spark ignition engines part I : identification of the factors influencing heat transfer

    Get PDF
    The heat transfer from the combustion gases to the cylinder walls inside a spark ignition engine is a key factor in an engine's design, due to its influence on the engine's effciency, power and emissions. Therefore a lot of research has been conducted in order to accurately model the heat transfer, for engine design and optimization purposes. These models have been found to provide inaccurate predictions for fuels which have significantly different gas properties compared to traditional fossil fuels. This indicates that the models either do not properly include gas properties, or are missing some important properties in their formulation. In order to construct a general (fuel-independent) heat transfer model, new measurements need to be executed, with multiple fuels that have different properties. Designing such an experiment requires a thorough understanding of the factors influencing the heat transfer and their interactions. In this paper a literature review is presented of heat transfer measurements in spark ignition engines in order to investigate the effect of the engine factors on the heat transfer. Based on this review, a root cause analysis is conducted to identify the independent factors that affect heat transfer. These factors are then used to set up two experiments according to a Design of Experiments methodology that allows the investigation of the effect of different gas properties and engine settings on the heat transfer in a consistent way. The results of these measurements for motored operation are discussed in [1] and for fired operation in a companion paper [2]

    Experimental Modeling of NOx and PM Generation from Combustion of Various Biodiesel Blends for Urban Transport Buses

    Get PDF
    Biodiesel has diverse sources of feedstock and the amount and composition of its emissions vary significantly depending on combustion conditions. Results of laboratory and field tests reveal that nitrogen oxides (NOx) and particulate matter (PM) emissions from biodiesel are influenced more by combustion conditions than emissions from regular diesel. Therefore, NOx and PM emissions documented through experiments and modeling studies are the primary focus of this investigation. In addition, a comprehensive analysis of the feedstock-related combustion characteristics and pollutants are investigated. Research findings verify that the oxygen contents, the degree of unsaturation, and the size of the fatty acids in biodiesel are the most important factors that determine the amounts and compositions of NOx and PM emissions

    Light-year Scale Radio Cores in Four LINER Galaxies

    Get PDF
    The LINER galaxies NGC 2911, NGC 3079, NGC 3998, and NGC 6500 were observed at 5 GHz with the European VLBI Network at a resolution of 5 milliarcsecond and found to possess flat-spectrum, variable, high-brightness temperature (TB>108T_{\rm B} > 10^8 K) radio cores. These radio characteristics reinforce the view that these LINERs host central engines associated with active galactic nuclei.Comment: 6 page

    The role of chemistry in the oscillating combustion of hydrocarbons : an experimental and theoretical study

    Get PDF
    The stable operation of low-temperature combustion processes is an open challenge, due to the presence of undesired deviations from steady-state conditions: among them, oscillatory behaviors have been raising significant interest. In this work, the establishment of limit cycles during the combustion of hydrocarbons in a wellstirred reactor was analyzed to investigate the role of chemistry in such phenomena. An experimental investigation of methane oxidation in dilute conditions was carried out, thus creating quasi-isothermal conditions and decoupling kinetic effects from thermal ones. The transient evolution of the mole fractions of the major species was obtained for different dilution levels (0.0025 <= X-CH4 <= 0.025), inlet temperatures (1080K <= T <= 1190K) and equivalence ratios (0.75 <= Phi <= 1). Rate of production analysis and sensitivity analysis on a fundamental kinetic model allowed to identify the role of the dominating recombination reactions, first driving ignition, then causing extinction. A bifurcation analysis provided further insight in the major role of these reactions for the reactor stability. One-parameter continuation allowed to identify a temperature range where a single, unstable solution exists, and where oscillations were actually observed. Multiple unstable states were identified below the upper branch, where the stable (cold) solution is preferred. The role of recombination reactions in determining the width of the unstable region could be captured, and bifurcation analysis showed that, by decreasing their strength, the unstable range was progressively reduced, up to the full disappearance of oscillations. This affected also the oxidation of heavier hydrocarbons, like ethylene. Finally, less dilute conditions were analyzed using propane as fuel: the coupling with heat exchange resulted in multiple Hopf Bifurcations, with the consequent formation of intermediate, stable regions within the instability range in agreement with the experimental observations
    corecore