4 research outputs found

    ASPIRER: A new computational approach for identifying non-classical secreted proteins based on deep learning

    Get PDF
    Protein secretion has a pivotal role in many biological processes and is particularly important for intercellular communication, from the cytoplasm to the host or external environment. Gram-positive bacteria can secrete proteins through multiple secretion pathways. The non-classical secretion pathway has recently received increasing attention among these secretion pathways, but its exact mechanism remains unclear. Non-classical secreted proteins (NCSPs) are a class of secreted proteins lacking signal peptides and motifs. Several NCSP predictors have been proposed to identify NCSPs and most of them employed the whole amino acid sequence of NCSPs to construct the model. However, the sequence length of different proteins varies greatly. In addition, not all regions of the protein are equally important and some local regions are not relevant to the secretion. The functional regions of the protein, particularly in the N- and C-terminal regions, contain important determinants for secretion. In this study, we propose a new hybrid deep learning-based framework, referred to as ASPIRER, which improves the prediction of NCSPs from amino acid sequences. More specifically, it combines a whole sequence-based XGBoost model and an N-terminal sequence-based convolutional neural network model; 5-fold cross-validation and independent tests demonstrate that ASPIRER achieves superior performance than existing state-of-the-art approaches. The source code and curated datasets of ASPIRER are publicly available at https://github.com/yanwu20/ASPIRER/. ASPIRER is anticipated to be a useful tool for improved prediction of novel putative NCSPs from sequences information and prioritization of candidate proteins for follow-up experimental validation.Xiaoyu Wang, Fuyi Li, Jing Xu, Jia Rong, Geoffrey I. Webb, Zongyuan Ge, Jian Li and Jiangning Son

    A normalized differential sequence feature encoding method based on amino acid sequences

    Get PDF
    Protein interactions are the foundation of all metabolic activities of cells, such as apoptosis, the immune response, and metabolic pathways. In order to optimize the performance of protein interaction prediction, a coding method based on normalized difference sequence characteristics (NDSF) of amino acid sequences is proposed. By using the positional relationships between amino acids in the sequences and the correlation characteristics between sequence pairs, NDSF is jointly encoded. Using principal component analysis (PCA) and local linear embedding (LLE) dimensionality reduction methods, the coded 174-dimensional human protein sequence vector is extracted using sequence features. This study compares the classification performance of four ensemble learning methods (AdaBoost, Extra trees, LightGBM, XGBoost) applied to PCA and LLE features. Cross-validation and grid search methods are used to find the best combination of parameters. The results show that the accuracy of NDSF is generally higher than that of the sequence matrix-based coding method (MOS) coding method, and the loss and coding time can be greatly reduced. The bar chart of feature extraction shows that the classification accuracy is significantly higher when using the linear dimensionality reduction method, PCA, compared to the nonlinear dimensionality reduction method, LLE. After classification with XGBoost, the model accuracy reaches 99.2%, which provides the best performance among all models. This study suggests that NDSF combined with PCA and XGBoost may be an effective strategy for classifying different human protein interactions

    Publications

    Get PDF
    This Annual Report covers from 1 January to 31 December 202

    ICR ANNUAL REPORT 2020 (Volume 27)[All Pages]

    Get PDF
    This Annual Report covers from 1 January to 31 December 202
    corecore