642 research outputs found

    Transport and energy in India. Energy used by Indian transport systems and consequent emissions: the need for quantitative analyses (Well-to-Wheel, Lifecycle)

    Get PDF
    The purpose of this work is, at first, a general overview on the state-of-art of the transportation system in India outlining the related energy consumption, for the different transport modes, with consequent estimated emissions. These elements are essential for the preparation of a high-level strategic transport planning on the whole energy issue, to help India in the choices of most suitable transportation systems, according to the well-to-wheel analysis (WTW). Pursuing a WTW global index for India that takes into account both the energy and environmental aspects on a uniform basis is an important aim: it allows the best choices to be made as well as enabling the comparison between some of the most important powertrain and fuel options on the Indian market, the results are discussed from three different points of view: energy, environmental and economic impac

    Fuel Cells for Transportation: An Overview

    Get PDF

    Strategies for regional deployment of hydrogen infrastructure

    Get PDF
    In response to the growing urge towards decarbonisation, more and more initiatives have been set to reduce and/or compensate the level of CO2 (carbon dioxide) emitted by human activities, which is one of the main responsible of the incumbent threats of “global warming” and “climate change”. “Climate neutrality by 2050” has become a decisive topic for political agendas worldwide and, against that background, the hydrogen economy can play a significant role. More and more countries have launched roadmaps and strategies for the creation of hydrogen value chains at national and international level. Also on regional scale, local integrated hydrogen ecosystems are growing, the so-called “Hydrogen Valleys”. These include German region North Rhine-Westphalia (NRW), which officially presented a hydrogen roadmap in November 2020, establishing targets for both the short (2025) and medium terms (2030) for the adoption of hydrogen in the sectors of Mobility, Industry, Energy & Infrastructure. The purpose of the present thesis is to investigate techno-economic strategies for the introduction of a hydrogen infrastructure in NRW over the next 15 years (2035), enabling the achievement of the abovementioned targets. Moreover, being buses explicitly mentioned within NRW hydrogen roadmap, the present thesis focuses on strategies to ensure the optimal deployment of hydrogen buses within the region. The work is conducted with support from the research institute of Forschungszentrum JĂŒlich (FZJ), North-Rhine Westphalia, Germany. A simulation model (H2MIND) developed by FZJ is taken as main research tool. The output from two other models by FZJ (FINE-NESTOR and FINE-Infrastructure, respectively), which defined the scenario behind the NRW H2 Roadmap, are reviewed and served as starting point for the adaptation of the H2MIND model. An integrative mapping activity regarding i) existing bus depots for NRW population mobility and ii) existing steel production sites in Germany serves the purpose of increasing the resolution of H2MIND model in the geospatial description of the potential hydrogen refuelling stations for bus companies in NRW. Both the hydrogen demand and production derived from FINE-NESTOR are distributed geospatially over Germany for the years 2025-2030-2035, according to the hydrogen-related technologies modelled within H2MIND. The demand is broken down into Buses, Trains, Cars, Heavy-Duty Vehicles (HDVs) and Light Commercial Vehicles (LCVs), Material Handling Vehicles (MHVs), Industrial uses for Steel, Ammonia, Methanol and other Chemicals. The production is modelled around onshore wind power plants, steam methane reforming industrial locations and import. Four hydrogen supply chain pathways were compared by H2MIND simulations: i) transport and distribution by gaseous hydrogen trailers (‘GH2 trucks’), ii) transport and distribution by liquefied hydrogen trailers (‘LH2 trucks’), iii) transport via newly built hydrogen pipelines plus distribution via gaseous hydrogen trailers (‘new pipelines’), iv) transport via reassigned natural gas pipelines plus distribution via gaseous hydrogen trailers (‘reassigned NG pipelines’). The analysis and assessment of the H2MIND simulation results are conducted mainly on economic merit. The key variable used for the assessment is the weighted average Total Expense (TOTEX) [€/kg H2]. This comparison is carried out from global-cost perspective, then the cost breakdown is considered in order to identify specific features in the cost determination. The weighted average TOTEX is calculated also for the case of onsite renewable energy-based electrolysis at bus hydrogen refuelling stations, in order to understand how such a strategic choice could impact the overall hydrogen supply chain cost – various shares of self-sufficiency at bus depots are considered, ranging from 0% (fully centralized configuration, no self-sufficiency) to 100% (total self-sufficiency, complete independent). An overall three-fold increase in hydrogen demand is expected between the years 2025 and 2035 (from 450.72 kt/yr to 1,862.33 kt/yr in Germany, and from 177.87 kt/yr to 519.16 kt/yr in NRW). Both on national and regional level, the main demand driver is expected to shift from the Industrial sector (in 2025) to Mobility (in 2035). As for the geospatial distribution, NRW concentrates the highest hydrogen demand in the country, covering alone approximatively one third of the total German hydrogen demand. Within NRW, the relevance of a district depends on what hydrogen-consuming sector is considered. For Mobility and public transportation, based on the allocation factors used within H2MIND model, Köln ranks as the district with highest demand in many mobility sectors. For buses, Aachen, Wuppertal, DĂŒsseldorf are the three top cities in the ranking in addition to Köln. Recommendation is that investments focus on high hydrogen-demand districts during the start-up phase of infrastructure development (period 2025-2035), where higher utilization factors of the infrastructural assets are expected and financial risks are therefore minimized. Looking into the weighted average TOTEX for the four analysed pathways, gaseous hydrogen trailers (‘GH2 trucks’) are the most convenient option for connecting production and consumption during the start-up phase of infrastructure development (period 2025-2035). Growing cost competitiveness is expected for ‘reassigned NG pipelines’ after 2035, thanks to the increased hydrogen demand and the higher utilization factor for pipelines. For the period 2025-2035, a fully centralized hydrogen supply pathway is the best option for covering bus-related hydrogen demand in the introductory phase of hydrogen infrastructure creation, with cost parity for onsite electrolysis being expected for the future after 2035Som svar pĂ„ kraven pĂ„ minskade koldioxidutslĂ€pp har fler och fler initiativ tagits för att minska och/eller kompensera nivĂ„n av CO2 (koldioxid) som slĂ€pps ut pĂ„ grund av mĂ€nskliga aktiviteter, vilket Ă€r en av de frĂ€msta orsakerna till de nuvarande hoten om "global uppvĂ€rmning". ” och ”klimatförĂ€ndringar”. "Klimatneutralitet till 2050" har blivit ett avgörande inslag pĂ„ politiska agendor vĂ€rlden över och mot den bakgrunden kan vĂ€tgasekonomin spela en betydande roll. Fler och fler lĂ€nder har lanserat fĂ€rdplaner och strategier för att skapa vĂ€rdekedjor för vĂ€tgas pĂ„ nationell och internationell nivĂ„. Även i regional skala vĂ€xer lokala integrerade vĂ€tgas-ekosystem, de sĂ„ kallade "vĂ€tgasdalarna". Dessa inkluderar den tyska regionen Nordrhein-Westfalen (NRW), som officiellt presenterade en fĂ€rdplan för vĂ€tgas i november 2020, som faststĂ€llde mĂ„l för bĂ„de kort (2025) och medellĂ„ng sikt (2030) för införandet av vĂ€tgas inom sektorerna rörlighet, industri, Energi & Infrastruktur. Syftet med denna avhandling Ă€r att undersöka tekniska och ekonomiska strategier för införandet av en vĂ€tgasinfrastruktur i NRW under de kommande 15 Ă„ren (2035), vilket gör det möjligt att uppnĂ„ ovan nĂ€mnda mĂ„l. Dessutom, eftersom bussar uttryckligen nĂ€mns i NRW:s vĂ€tgasfĂ€rdplan, fokuserar detta examensarbete pĂ„ strategier för att sĂ€kerstĂ€lla en optimal utplacering av vĂ€tgasbussar inom regionen. Arbetet bedrivs med stöd frĂ„n forskningsinstitutet Forschungszentrum JĂŒlich (FZJ), Nordrhein-Westfalen, Tyskland. En simuleringsmodell (H2MIND) utvecklad av FZJ anvĂ€nds som huvudverktyg för forskning. Resultatet frĂ„n tvĂ„ andra modeller av FZJ (FINE-NESTOR respektive FINE-Infrastructure), som definierade scenariot bakom NRW H2 Roadmap, granskas och tjĂ€nade som utgĂ„ngspunkt för anpassningen av H2MIND-modellen. En integrerad kartlĂ€ggning av i) befintliga bussdepĂ„er för NRW- befolkningsrörlighet och ii) befintliga stĂ„lproduktionsanlĂ€ggningar i Tyskland tjĂ€nar syftet att öka upplösningen av H2MIND-modellen i den geospatiala beskrivningen av potentiella vĂ€tgastankstationer för bussföretag i NRW. BĂ„de vĂ€tgasefterfrĂ„gan och produktionen frĂ„n FINE-NESTOR distribueras geospatialt över Tyskland för Ă„ren 2025-2030-2035, enligt de vĂ€tgasrelaterade teknologierna som modelleras inom H2MIND. EfterfrĂ„gan Ă€r uppdelad i bussar, tĂ„g, bilar, tunga fordon (HDV) och lĂ€tta kommersiella fordon (LCV), materialhanteringsfordon (MHV), industriell anvĂ€ndning för stĂ„l, ammoniak, metanol och andra kemikalier. Produktionen Ă€r modellerad kring vindkraftverk pĂ„ land, Ă„ngmetanreformerande industrilokaler och import. Fyra varianter av vĂ€tgasförsörjningskedjan jĂ€mfördes med H2MIND-simuleringar: i) transport och distribution med gasformiga vĂ€tgasslĂ€p ('GH2-lastbilar'), ii) transport och distribution med slĂ€p för flytande vĂ€te ('LH2-lastbilar'), iii) transport via nybyggda vĂ€tgas rörledningar plus distribution via slĂ€p för gasformigt vĂ€tgas (”nya pipelines”), iv) transport via tidigare naturgasledningar plus distribution via slĂ€p för gasformigt vĂ€te (”om-utnyttjade naturgasrörledningar”). Analysen och bedömningen av H2MIND-simuleringsresultaten utförs huvudsakligen pĂ„ ekonomiska meriter. Den nyckelvariabel som anvĂ€nds för bedömningen Ă€r den vĂ€gda genomsnittliga totala kostnaden (TOTEX) [€/kg H2]. Denna jĂ€mförelse görs ur ett globalt kostnadsperspektiv, sedan analyseras kostnadsfördelningen för att identifiera specifika egenskaper i kostnadsbestĂ€mningen. Det viktade genomsnittet av TOTEX berĂ€knas Ă€ven för fallet med elektrolys baserad pĂ„ förnybar energi pĂ„ plats vid vĂ€tgastankstationer för bussar, för att förstĂ„ hur ett sĂ„dant strategiskt val skulle kunna pĂ„verka den totala kostnaden för vĂ€tgasförsörjningskedjan – olika andelar av sjĂ€lvförsörjning vid bussdepĂ„er övervĂ€gs, allt frĂ„n 0 % (helt centraliserad konfiguration, ingen sjĂ€lvförsörjning) till 100 % (total sjĂ€lvförsörjning, fullstĂ€ndigt oberoende). En övergripande trefaldig ökning av efterfrĂ„gan pĂ„ vĂ€tgas förvĂ€ntas mellan Ă„ren 2025 och 2035 (frĂ„n 450,72 kt/Ă„r till 1 862,33 kt/Ă„r i Tyskland och frĂ„n 177,87 kt/Ă„r till 519,16 kt/Ă„r i NRW). BĂ„de pĂ„ nationell och regional nivĂ„ förvĂ€ntas den frĂ€msta efterfrĂ„gedrivkraften flyttas frĂ„n industrisektorn (2025) till mobilitet (2035). NĂ€r det gĂ€ller den geospatiala fördelningen, koncentrerar NRW den högsta efterfrĂ„gan pĂ„ vĂ€tgas i landet, och tĂ€cker ensam ungefĂ€r en tredjedel av det totala tyska vĂ€tgasbehovet. Inom NRW beror ett distrikts relevans pĂ„ vilken vĂ€tgasförbrukande sektor som betraktas. För Mobilitet och kollektivtrafik, baserat pĂ„ allokeringsfaktorer som anvĂ€nds inom H2MIND-modellen, rankas Köln som det distrikt med högst efterfrĂ„gan inom mĂ„nga mobilitetssektorer. För bussar Ă€r Aachen, Wuppertal, DĂŒsseldorf de tre bĂ€sta stĂ€derna i rankingen förutom Köln. Rekommendation Ă€r att investeringar fokuserar pĂ„ distrikt med hög efterfrĂ„gan pĂ„ vĂ€tgas under uppstartsfasen av infrastrukturutveckling (perioden 2025–2035), dĂ€r högre utnyttjandefaktorer av infrastrukturtillgĂ„ngarna förvĂ€ntas och finansiella risker dĂ€rför minimeras. Om man tittar pĂ„ det vĂ€gda genomsnittliga TOTEX för de fyra analyserade varianterna, Ă€r slĂ€p med vĂ€te i gasform (‘GH2-lastbilar’) det lĂ€mpligaste alternativet för att koppla samman produktion och konsumtion under uppstartsfasen av infrastrukturutvecklingen (perioden 2025–2035). Ökande kostnadsfördelar förvĂ€ntas för "om-utnyttjade naturgasrörledningar" efter 2035, tack vare den ökade efterfrĂ„gan pĂ„ vĂ€tgas och den högre utnyttjandefaktorn för rörledningar. För perioden 2025–2035 Ă€r en helt centraliserad vĂ€tgasförsörjningsvĂ€g det bĂ€sta alternativet för att tĂ€cka bussrelaterad efterfrĂ„gan pĂ„ vĂ€tgas i den inledande fasen av etablerandet av en vĂ€tgasinfrastruktur, med kostnadsparitet för elektrolys pĂ„ plats vilket förvĂ€ntas vara lösningen efter 2035Objectius de Desenvolupament Sostenible::7 - Energia Assequible i No Contaminant::7.2 - Per a 2030, augmentar substancialment el percentatge d’energia renovable en el con­junt de fonts d’energiaObjectius de Desenvolupament Sostenible::11 - Ciutats i Comunitats Sostenibles::11.2 - Per a 2030, proporcionar accĂ©s a sistemes de transport segurs, assequibles, accessi­bles i sostenibles per a totes les persones, i millorar la seguretat viĂ ria, en particular mitjan­çant l’ampliaciĂł del transport pĂșblic, amb especial atenciĂł a les necessitats de les persones en situaciĂł vulnerable, dones, nenes, nens, persones amb discapacitat i persones gran

    Sustainable Freight Transport

    Get PDF
    This Special Issue of Sustainability reports on recent research aiming to make the freight transport sector more sustainable. The sector faces significant challenges in different domains of sustainability, including the reduction of greenhouse gas emissions and the management of health and safety impacts. In particular, the intention to decarbonise the sector’s activities has led to a strong increase in research efforts—this is also the main focus of the Special Issue. Sustainable freight transport operations represent a significant challenge with multiple technical, operational, and political aspects. The design, testing, and implementation of interventions require multi-disciplinary, multi-country research. Promising interventions are not limited to introducing new transport technologies, but also include changes in framework conditions for transport, in terms of production and logistics processes. Due to the uncertainty of impacts, the number of stakeholders, and the difficulty of optimizing across actors, understanding the impacts of these measures is not a trivial problem. Therefore, research is not only needed on the design and evaluation of individual interventions, but also on the approach of their joint deployment through a concerted public/private programme. This Special Issue addresses both dimensions, in two distinct groups of papers—the programming of interventions and the individual sustainability measures themselves

    Study of Civil Markets for Heavy-Lift Airships

    Get PDF
    The civil markets for heavy lift airships (HLAs) were defined by first identifying areas of most likely application. The operational suitability of HLAs for the applications identified were then assessed. The operating economics of HLAs were established and the market size for HLA services estimated by comparing HLA operating and economic characteristics with those of competing modes. The sensitivities of the market size to HLA characteristics were evaluated and the number and sizes of the vehicles required to service the more promising markets were defined. Important characteristics for future HLAs are discussed that were derived from the study of each application, including operational requirements, features enhancing profitability, military compatibility, improved design requirements, approach to entry into service, and institutional implications for design and operation

    Commodity-based Freight Activity on Inland Waterways through the Fusion of Public Datasets for Multimodal Transportation Planning

    Get PDF
    Within the U.S., the 18.6 billion tons of goods currently moved along the multimodal transportation system are expected to grow 51% by 2045. Most of those goods are transported by roadways. However, several benefits can be realized by shippers and consumers by shifting freight to more efficient modes, such as inland waterways, or adopting a multimodal scheme. To support such freight growth sustainably and efficiently, federal legislation calls for the development of plans, methods, and tools to identify and prioritize future multimodal transportation infrastructure needs. However, given the historical mode-specific approach to freight data collection, analysis, and modeling, challenges remain to adopt a fully multimodal approach that integrates underrepresented modes, such as waterways, into multimodal forecasting tools to identify and prioritize transportation infrastructure needs. Examples of such challenges are data heterogeneity, confidentiality, limitations in terms of spatial and temporal coverage, high cost associated with data collection, subjectivity in surveys responses, etc. To overcome these challenges, this work fuses data across a variety of novel transportation sources to close existing gaps in freight data needed to support multimodal long-range freight planning. In particular, the objective of this work is to develop methods to allow integration of inland waterway transportation into commodity-based freight forecasting models, by leveraging Automatic Identification System (AIS) data. The following approaches are presented in this dissertation: i) Maritime Automatic Identification System (AIS) data is mapped to a detailed inland navigable waterway network, allowing for an improved representation of waterway modes into multimodal freight travel demand models which currently suffer from unbalanced representation of waterways. Validation results show the model correctly identifies 84% stops at inland waterway ports and 83.5% of trips crossing locks. ii) AIS and truck Global Positioning System (GPS) data are fused to a multimodal network to identify the area of impact of a freight investment, providing a single methodology and data source to compare and contrast diverse transportation infrastructure investments. This method identifies parallel truck and vessel flows indicating potential for modal shift. iii) Truck GPS and maritime Lock Performance Monitoring System (LPMS) data are fused via a multi-commodity assignment model to characterize and quantify annual commodity throughput at port terminals on inland waterways, generating new data from public datasets, to support estimation of commodity-based freight fluidity performance measures. Results show that 84% of ports had less than a 20% difference between estimated and observed truck volumes. iv) AIS, LPMS, and truck GPS datasets are fused to disaggregate estimated annual commodity port throughput to vessel trips on inland waterways. Vessel trips characterized by port of origin, destination, path, timestamp, and commodity carried, are mapped to a detailed inland waterway network, allowing for a detailed commodity flow analysis, previously unavailable in the public domain. The novel, repeatable, data-driven methods and models proposed in this work are applied to the 43 freight port terminals located on the Arkansas River. These models help to evaluate network performance, identify and prioritize multimodal freight transportation infrastructure needs, and introduce a unique focus on modal shift towards inland waterway transportation

    The implications of resource depletion for freight transport and distribution

    Get PDF
    The distribution of goods is essential to all developed economies and is dependent upon non-renewable resources of energy and raw materials which must become progressively scarcer and more expensive within the next fifty years. Although resource shortages are thought unlikely to bring transport systems to a half within this time, the historical trend towards concentration upon relatively resource extravagent modes and systems may create future problems. The purpose of this wideranging thesis is therefore to examine ways by which freight transport's dependence upon scarce resources may be reduced and to discuss the potential for a more efficient use of resources in distribution. [Continues.

    Feasibility study of modern airships, phase 1. Volume 1: Summary and mission analysis (tasks 2 and 4)

    Get PDF
    The histroy, potential mission application, and designs of lighter-than-air (LTA) vehicles are researched and evaluated. Missions are identified to which airship vehicles are potentially suited. Results of the mission analysis are combined with the findings of a parametric analysis to formulate the mission/vehicle combinations recommended for further study. Current transportation systems are surveyed and potential areas of competition are identified as well as potential missions resulting from limitations of these systems. Potential areas of military usage are included

    Technology Roadmap for the 21st Century Truck Program, a government-industry research partnership

    Full text link
    • 

    corecore