1,053 research outputs found

    Automatic Classification and Quantification of Basic Distresses on Urban Flexible Pavement through Convolutional Neural Networks

    Full text link
    [EN] Pavement condition assessment is a critical step in road pavement management. In contrast to the automatic and objective methods used for rural roads, the most commonly used method in urban areas is the development of visual surveys usually filled out by technicians that leads to a subjective pavement assessment. While most previous studies on automatic identification of distresses focused on crack detection, this research aims not only to cover the identification and classification of multiple urban flexible pavement distresses (longitudinal and transverse cracking, alligator cracking, raveling, potholes, and patching), but also to quantify them through the application of Convolutional Neural Networks. Additionally, this study also proposes a methodology for an automatic pavement assessment considering the different stages developed in this research. This methodology allows for a more efficient and reliable pavement assessment, minimizing the cost and time required by the current visual surveys.The study presented in this paper is part of the research project titled SIMEPU Sistema Integral de Mantenimiento Eficiente de Pavimentos Urbanos, funded by the Spanish Ministries of Science and Innovation and Universities, as well as the European Regional Development Fund under Grant No. RTC-2017-6148-7. The authors also acknowledge the support of partner companies Pavasal Empresa Constructora, S.A. and CPS Infraestructuras, Movilidad y Medio Ambiente, S.L. and the Valencia City Council.Llopis-Castelló, D.; Paredes Palacios, R.; Parreño-Lara, M.; García-Segura, T.; Pellicer, E. (2021). Automatic Classification and Quantification of Basic Distresses on Urban Flexible Pavement through Convolutional Neural Networks. Journal of Transportation Engineering, Part B: Pavements. 147(4):1-8. https://doi.org/10.1061/JPEODX.000032118147

    Robust adaptive synchronization of a class of uncertain chaotic systems with unknown time-delay

    Get PDF
    The pavement is a complex structure that is influenced by various environmental and loading conditions. The regular assessment of pavement performance is essential for road network maintenance. International roughness index (IRI) and pavement condition index (PCI) are well-known indices used for smoothness and surface condition assessment, respectively. Machine learning techniques have recently made significant advancements in pavement engineering. This paper presents a novel roughness-distress study using random forest (RF). After determining the PCI and IRI values for the sample units, the PCI prediction process is advanced using RF and random forest trained with a genetic algorithm (RF-GA). The models are validated using correlation coefficient (CC), scatter index (SI), and Willmott’s index of agreement (WI) criteria. For the RF method, the values of the three parameters mentioned were −0.177, 0.296, and 0.281, respectively, whereas in the RF-GA method, −0.031, 0.238, and 0.297 values were obtained for these parameters. This paper aims to fulfill the literature’s identified gaps and help pavement engineers overcome the challenges with the conventional pavement maintenance systems

    Utilising Convolutional Neural Networks for Pavement Distress Classification and Detection

    Get PDF
    This paper examines deep learning models for accurate and efficient identification and classification of pavement distresses. In it, a variety of related studies conducted on the topic as well as the various identification and classification methods proposed, such as edge detection, machine learning classification informed by statistical feature extraction, artificial neural networks, and real-time object detection systems, are discussed. The study investigates the effect of image processing techniques such as grayscaling, background subtraction, and image resizing on the performance and generalizability of the models. Using convolutional neural networks (CNN) architectures, this paper proposes a model that correctly classifies images into five pavement distress categories, namely fatigue (or alligator), longitudinal, transverse, patches, and craters, with an accuracy rate of 90.4% and a recall rate of 90.1%. The model is contrasted to a current state-of-the-art model based on the You Only Look Once framework as well as a baseline CNN model to demonstrate the impact of the image processing and architecture building techniques discussed on performance. The findings of this paper contribute to the fields of computer vision and infrastructure monitoring by demonstrating the efficacy of convolutional neural networks (CNNs) in image classification and the viability of using CNNbased models to automate pavement condition monitoring

    An Exploration of Recent Intelligent Image Analysis Techniques for Visual Pavement Surface Condition Assessment.

    Get PDF
    Road pavement condition assessment is essential for maintenance, asset management, and budgeting for pavement infrastructure. Countries allocate a substantial annual budget to maintain and improve local, regional, and national highways. Pavement condition is assessed by measuring several pavement characteristics such as roughness, surface skid resistance, pavement strength, deflection, and visual surface distresses. Visual inspection identifies and quantifies surface distresses, and the condition is assessed using standard rating scales. This paper critically analyzes the research trends in the academic literature, professional practices and current commercial solutions for surface condition ratings by civil authorities. We observe that various surface condition rating systems exist, and each uses its own defined subset of pavement characteristics to evaluate pavement conditions. It is noted that automated visual sensing systems using intelligent algorithms can help reduce the cost and time required for assessing the condition of pavement infrastructure, especially for local and regional road networks. However, environmental factors, pavement types, and image collection devices are significant in this domain and lead to challenging variations. Commercial solutions for automatic pavement assessment with certain limitations exist. The topic is also a focus of academic research. More recently, academic research has pivoted toward deep learning, given that image data is now available in some form. However, research to automate pavement distress assessment often focuses on the regional pavement condition assessment standard that a country or state follows. We observe that the criteria a region adopts to make the evaluation depends on factors such as pavement construction type, type of road network in the area, flow and traffic, environmental conditions, and region\u27s economic situation. We summarized a list of publicly available datasets for distress detection and pavement condition assessment. We listed approaches focusing on crack segmentation and methods concentrating on distress detection and identification using object detection and classification. We segregated the recent academic literature in terms of the camera\u27s view and the dataset used, the year and country in which the work was published, the F1 score, and the architecture type. It is observed that the literature tends to focus more on distress identification ( presence/absence detection) but less on distress quantification, which is essential for developing approaches for automated pavement rating

    INTELLIGENT ROAD MAINTENANCE: A MACHINE LEARNING APPROACH FOR SURFACE DEFECT DETECTION

    Get PDF
    The emergence of increased sources for Big Data through consumer recording devices gives rise to a new basis for the management and governance of public infrastructures and policy de-sign. Road maintenance and detection of road surface defects, such as cracks, have traditionally been a time consuming and manual process. Lately, increased automation using easily acquirable front-view digital natural scene images is seen to be an alternative for taking timely maintenance decisions; reducing accidents and operating cost and increasing public safety. In this paper, we propose a machine learning based approach to handle the challenge of crack and related defect detection on road surfaces using front-view images captured from driver’s viewpoint under diverse conditions. We use a superpixel based method to first process the road images into smaller coherent image regions. These superpixels are then classified into crack and non-crack regions. Various texture-based features are combined for the classification mod-el. Classifiers such as Gradient Boosting, Artificial Neural Network, Random Forest and Linear Support Vector Machines are evaluated for the task. Evaluations on real datasets show that the approach successfully handles different road surface conditions and crack-types, while locating the defective regions in the scene images

    Deep Learning Approaches in Pavement Distress Identification: A Review

    Full text link
    This paper presents a comprehensive review of recent advancements in image processing and deep learning techniques for pavement distress detection and classification, a critical aspect in modern pavement management systems. The conventional manual inspection process conducted by human experts is gradually being superseded by automated solutions, leveraging machine learning and deep learning algorithms to enhance efficiency and accuracy. The ability of these algorithms to discern patterns and make predictions based on extensive datasets has revolutionized the domain of pavement distress identification. The paper investigates the integration of unmanned aerial vehicles (UAVs) for data collection, offering unique advantages such as aerial perspectives and efficient coverage of large areas. By capturing high-resolution images, UAVs provide valuable data that can be processed using deep learning algorithms to detect and classify various pavement distresses effectively. While the primary focus is on 2D image processing, the paper also acknowledges the challenges associated with 3D images, such as sensor limitations and computational requirements. Understanding these challenges is crucial for further advancements in the field. The findings of this review significantly contribute to the evolution of pavement distress detection, fostering the development of efficient pavement management systems. As automated approaches continue to mature, the implementation of deep learning techniques holds great promise in ensuring safer and more durable road infrastructure for the benefit of society
    • …
    corecore