12,577 research outputs found

    Prevention of cyberattacks in WSN and packet drop by CI framework and information processing protocol using AI and Big Data

    Full text link
    As the reliance on wireless sensor networks (WSNs) rises in numerous sectors, cyberattack prevention and data transmission integrity become essential problems. This study provides a complete framework to handle these difficulties by integrating a cognitive intelligence (CI) framework, an information processing protocol, and sophisticated artificial intelligence (AI) and big data analytics approaches. The CI architecture is intended to improve WSN security by dynamically reacting to an evolving threat scenario. It employs artificial intelligence algorithms to continuously monitor and analyze network behavior, identifying and mitigating any intrusions in real time. Anomaly detection algorithms are also included in the framework to identify packet drop instances caused by attacks or network congestion. To support the CI architecture, an information processing protocol focusing on efficient and secure data transfer within the WSN is introduced. To protect data integrity and prevent unwanted access, this protocol includes encryption and authentication techniques. Furthermore, it enhances the routing process with the use of AI and big data approaches, providing reliable and timely packet delivery. Extensive simulations and tests are carried out to assess the efficiency of the suggested framework. The findings show that it is capable of detecting and preventing several forms of assaults, including as denial-of-service (DoS) attacks, node compromise, and data tampering. Furthermore, the framework is highly resilient to packet drop occurrences, which improves the WSN's overall reliability and performanc

    Audio-visual multi-modality driven hybrid feature learning model for crowd analysis and classification

    Get PDF
    The high pace emergence in advanced software systems, low-cost hardware and decentralized cloud computing technologies have broadened the horizon for vision-based surveillance, monitoring and control. However, complex and inferior feature learning over visual artefacts or video streams, especially under extreme conditions confine majority of the at-hand vision-based crowd analysis and classification systems. Retrieving event-sensitive or crowd-type sensitive spatio-temporal features for the different crowd types under extreme conditions is a highly complex task. Consequently, it results in lower accuracy and hence low reliability that confines existing methods for real-time crowd analysis. Despite numerous efforts in vision-based approaches, the lack of acoustic cues often creates ambiguity in crowd classification. On the other hand, the strategic amalgamation of audio-visual features can enable accurate and reliable crowd analysis and classification. Considering it as motivation, in this research a novel audio-visual multi-modality driven hybrid feature learning model is developed for crowd analysis and classification. In this work, a hybrid feature extraction model was applied to extract deep spatio-temporal features by using Gray-Level Co-occurrence Metrics (GLCM) and AlexNet transferrable learning model. Once extracting the different GLCM features and AlexNet deep features, horizontal concatenation was done to fuse the different feature sets. Similarly, for acoustic feature extraction, the audio samples (from the input video) were processed for static (fixed size) sampling, pre-emphasis, block framing and Hann windowing, followed by acoustic feature extraction like GTCC, GTCC-Delta, GTCC-Delta-Delta, MFCC, Spectral Entropy, Spectral Flux, Spectral Slope and Harmonics to Noise Ratio (HNR). Finally, the extracted audio-visual features were fused to yield a composite multi-modal feature set, which is processed for classification using the random forest ensemble classifier. The multi-class classification yields a crowd-classification accurac12529y of (98.26%), precision (98.89%), sensitivity (94.82%), specificity (95.57%), and F-Measure of 98.84%. The robustness of the proposed multi-modality-based crowd analysis model confirms its suitability towards real-world crowd detection and classification tasks

    An advanced deep learning models-based plant disease detection: A review of recent research

    Get PDF
    Plants play a crucial role in supplying food globally. Various environmental factors lead to plant diseases which results in significant production losses. However, manual detection of plant diseases is a time-consuming and error-prone process. It can be an unreliable method of identifying and preventing the spread of plant diseases. Adopting advanced technologies such as Machine Learning (ML) and Deep Learning (DL) can help to overcome these challenges by enabling early identification of plant diseases. In this paper, the recent advancements in the use of ML and DL techniques for the identification of plant diseases are explored. The research focuses on publications between 2015 and 2022, and the experiments discussed in this study demonstrate the effectiveness of using these techniques in improving the accuracy and efficiency of plant disease detection. This study also addresses the challenges and limitations associated with using ML and DL for plant disease identification, such as issues with data availability, imaging quality, and the differentiation between healthy and diseased plants. The research provides valuable insights for plant disease detection researchers, practitioners, and industry professionals by offering solutions to these challenges and limitations, providing a comprehensive understanding of the current state of research in this field, highlighting the benefits and limitations of these methods, and proposing potential solutions to overcome the challenges of their implementation

    The State of the Art in Deep Learning Applications, Challenges, and Future Prospects::A Comprehensive Review of Flood Forecasting and Management

    Get PDF
    Floods are a devastating natural calamity that may seriously harm both infrastructure and people. Accurate flood forecasts and control are essential to lessen these effects and safeguard populations. By utilizing its capacity to handle massive amounts of data and provide accurate forecasts, deep learning has emerged as a potent tool for improving flood prediction and control. The current state of deep learning applications in flood forecasting and management is thoroughly reviewed in this work. The review discusses a variety of subjects, such as the data sources utilized, the deep learning models used, and the assessment measures adopted to judge their efficacy. It assesses current approaches critically and points out their advantages and disadvantages. The article also examines challenges with data accessibility, the interpretability of deep learning models, and ethical considerations in flood prediction. The report also describes potential directions for deep-learning research to enhance flood predictions and control. Incorporating uncertainty estimates into forecasts, integrating many data sources, developing hybrid models that mix deep learning with other methodologies, and enhancing the interpretability of deep learning models are a few of these. These research goals can help deep learning models become more precise and effective, which will result in better flood control plans and forecasts. Overall, this review is a useful resource for academics and professionals working on the topic of flood forecasting and management. By reviewing the current state of the art, emphasizing difficulties, and outlining potential areas for future study, it lays a solid basis. Communities may better prepare for and lessen the destructive effects of floods by implementing cutting-edge deep learning algorithms, thereby protecting people and infrastructure

    Technology for Low Resolution Space Based RSO Detection and Characterisation

    Get PDF
    Space Situational Awareness (SSA) refers to all activities to detect, identify and track objects in Earth orbit. SSA is critical to all current and future space activities and protect space assets by providing access control, conjunction warnings, and monitoring status of active satellites. Currently SSA methods and infrastructure are not sufficient to account for the proliferations of space debris. In response to the need for better SSA there has been many different areas of research looking to improve SSA most of the requiring dedicated ground or space-based infrastructure. In this thesis, a novel approach for the characterisation of RSO’s (Resident Space Objects) from passive low-resolution space-based sensors is presented with all the background work performed to enable this novel method. Low resolution space-based sensors are common on current satellites, with many of these sensors being in space using them passively to detect RSO’s can greatly augment SSA with out expensive infrastructure or long lead times. One of the largest hurtles to overcome with research in the area has to do with the lack of publicly available labelled data to test and confirm results with. To overcome this hurtle a simulation software, ORBITALS, was created. To verify and validate the ORBITALS simulator it was compared with the Fast Auroral Imager images, which is one of the only publicly available low-resolution space-based images found with auxiliary data. During the development of the ORBITALS simulator it was found that the generation of these simulated images are computationally intensive when propagating the entire space catalog. To overcome this an upgrade of the currently used propagation method, Specialised General Perturbation Method 4th order (SGP4), was performed to allow the algorithm to run in parallel reducing the computational time required to propagate entire catalogs of RSO’s. From the results it was found that the standard facet model with a particle swarm optimisation performed the best estimating an RSO’s attitude with a 0.66 degree RMSE accuracy across a sequence, and ~1% MAPE accuracy for the optical properties. This accomplished this thesis goal of demonstrating the feasibility of low-resolution passive RSO characterisation from space-based platforms in a simulated environment

    Fault diagnosis in aircraft fuel system components with machine learning algorithms

    Get PDF
    There is a high demand and interest in considering the social and environmental effects of the component’s lifespan. Aircraft are one of the most high-priced businesses that require the highest reliability and safety constraints. The complexity of aircraft systems designs also has advanced rapidly in the last decade. Consequently, fault detection, diagnosis and modification/ repair procedures are becoming more challenging. The presence of a fault within an aircraft system can result in changes to system performances and cause operational downtime or accidents in a worst-case scenario. The CBM method that predicts the state of the equipment based on data collected is widely used in aircraft MROs. CBM uses diagnostics and prognostics models to make decisions on appropriate maintenance actions based on the Remaining Useful Life (RUL) of the components. The aircraft fuel system is a crucial system of aircraft, even a minor failure in the fuel system can affect the aircraft's safety greatly. A failure in the fuel system that impacts the ability to deliver fuel to the engine will have an immediate effect on system performance and safety. There are very few diagnostic systems that monitor the health of the fuel system and even fewer that can contain detected faults. The fuel system is crucial for the operation of the aircraft, in case of failure, the fuel in the aircraft will become unusable/unavailable to reach the destination. It is necessary to develop fault detection of the aircraft fuel system. The future aircraft fuel system must have the function of fault detection. Through the information of sensors and Machine Learning Techniques, the aircraft fuel system’s fault type can be detected in a timely manner. This thesis discusses the application of a Data-driven technique to analyse the healthy and faulty data collected using the aircraft fuel system model, which is similar to Boeing-777. The data is collected is processed through Machine learning Techniques and the results are comparedPhD in Manufacturin

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Irish Ocean Climate and Ecosystem Status Report

    Get PDF
    Summary report for Irish Ocean Climate & Ecosystem Status Report also published here. This Irish Ocean Climate & Ecosystem Status Summary for Policymakers brings together the latest evidence of ocean change in Irish waters. The report is intended to summarise the current trends in atmospheric patterns, ocean warming, sea level rise, ocean acidification, plankton and fish distributions and abundance, and seabird population trends. The report represents a collaboration between marine researchers within the Marine Institute and others based in Ireland’s higher education institutes and public bodies. It includes authors from Met Éireann, Maynooth University, the University of Galway, the Atlantic Technological University, National Parks and Wildlife, Birdwatch Ireland, Trinity College Dublin, University College Dublin, Inland Fisheries Ireland, The National Water Forum, the Environmental Protection Agency, and the Dundalk Institute of Technology.This report is intended to summarise the current trends in Ireland’s ocean climate. Use has been made of archived marine data held by a range of organisations to elucidate some of the key trends observed in phenomena such as atmospheric changes, ocean warming, sea level rise, acidification, plankton and fish distributions and abundance, and seabirds. The report aims to summarise the key findings and recommendations in each of these areas as a guide to climate adaptation policy and for the public. It builds on the previous Ocean Climate & Ecosystem Status Report published in 2010. The report examines the recently published literature in each of the topic areas and combines this in many cases with analysis of new data sets including long-term time series to identify trends in essential ocean variables in Irish waters. In some cases, model projections of the likely future state of the atmosphere and ocean are presented under different climate emission scenarios.Marine Institut

    Introduction to Facial Micro Expressions Analysis Using Color and Depth Images: A Matlab Coding Approach (Second Edition, 2023)

    Full text link
    The book attempts to introduce a gentle introduction to the field of Facial Micro Expressions Recognition (FMER) using Color and Depth images, with the aid of MATLAB programming environment. FMER is a subset of image processing and it is a multidisciplinary topic to analysis. So, it requires familiarity with other topics of Artifactual Intelligence (AI) such as machine learning, digital image processing, psychology and more. So, it is a great opportunity to write a book which covers all of these topics for beginner to professional readers in the field of AI and even without having background of AI. Our goal is to provide a standalone introduction in the field of MFER analysis in the form of theorical descriptions for readers with no background in image processing with reproducible Matlab practical examples. Also, we describe any basic definitions for FMER analysis and MATLAB library which is used in the text, that helps final reader to apply the experiments in the real-world applications. We believe that this book is suitable for students, researchers, and professionals alike, who need to develop practical skills, along with a basic understanding of the field. We expect that, after reading this book, the reader feels comfortable with different key stages such as color and depth image processing, color and depth image representation, classification, machine learning, facial micro-expressions recognition, feature extraction and dimensionality reduction. The book attempts to introduce a gentle introduction to the field of Facial Micro Expressions Recognition (FMER) using Color and Depth images, with the aid of MATLAB programming environment.Comment: This is the second edition of the boo

    A review of abnormal behavior detection in activities of daily living

    Get PDF
    Abnormal behavior detection (ABD) systems are built to automatically identify and recognize abnormal behavior from various input data types, such as sensor-based and vision-based input. As much as the attention received for ABD systems, the number of studies on ABD in activities of daily living (ADL) is limited. Owing to the increasing rate of elderly accidents in the home compound, ABD in ADL research should be given as much attention to preventing accidents by sending out signals when abnormal behavior such as falling is detected. In this study, we compare and contrast the formation of the ABD system in ADL from input data types (sensor-based input and vision-based input) to modeling techniques (conventional and deep learning approaches). We scrutinize the public datasets available and provide solutions for one of the significant issues: the lack of datasets in ABD in ADL. This work aims to guide new research to understand the field of ABD in ADL better and serve as a reference for future study of better Ambient Assisted Living with the growing smart home trend
    • …
    corecore