1,054 research outputs found

    Validation and Data Repairing of Document Image using Steganography Method

    Get PDF
    This paper attempts to propose a novel technique of blind authentication based on the method of secret in addition to data repair capability for grayscale document images through the use of the Portable Network Graphics (PNG) image. For every block of a grayscale document image, an authentication signal is generated, which, along with the block content in binary, is transformed into numerous shares using the Shamir secret sharing scheme. The parameters involved are carefully selected so that as many shares as possible can be generated and embedded into an alpha channel plane. After this, the alpha channel plane is combined with the original grayscale image to yield a PNG image. During this process, the computed share values are recorded as a range of alpha channel values near their maximum value of 255 to return a transparent stego-image with a disguised effect. In the image authentication process, marking of an image block is done as tampered, if the authentication signal computed from the current block content does not match the one extracted from the shares embedded in the alpha channel plane. Each tampered block is then subjected to data repairing by a reverse Shamir scheme after collecting two shares from unmarked blocks. Procedures to protect the safety of the data that lies concealed in the alpha channel have been proposed. Decent experimental results demonstrate the efficiency of the proposed method

    Enhancing the Security and Quality Image Steganography using Hiding Algorithm based on Minimizing the Distortion

    Get PDF
    In this paper, highest state-of-the-art binary image Steganographic approach considers the spinning misinterpretation according to the personal visual structure, which will be not secure when they are attacked by Steganalyzers. In this paper, a binary image Steganographic scheme that aims to reduce the hiding misinterpretation on the balance is presented. We excerpt the complement, turn, and following-invariant local balance arrangement from the binary image first. The weighted sum of Complement, Turn, And Following-Invariant Local Balance changes when spinning one pixel is then employed to allot the spinning misinterpretation corresponding to that pixel. By examining on both simple binary images and the composed image constructed message set, we show that the advanced appraisal can well describe the misinterpretations on both visual aspect and statistics. Based on the proposed measurement, a practical Steganographic scheme is develope

    Print-Scan Resilient Text Image Watermarking Based on Stroke Direction Modulation for Chinese Document Authentication

    Get PDF
    Print-scan resilient watermarking has emerged as an attractive way for document security. This paper proposes an stroke direction modulation technique for watermarking in Chinese text images. The watermark produced by the idea offers robustness to print-photocopy-scan, yet provides relatively high embedding capacity without losing the transparency. During the embedding phase, the angle of rotatable strokes are quantized to embed the bits. This requires several stages of preprocessing, including stroke generation, junction searching, rotatable stroke decision and character partition. Moreover, shuffling is applied to equalize the uneven embedding capacity. For the data detection, denoising and deskewing mechanisms are used to compensate for the distortions induced by hardcopy. Experimental results show that our technique attains high detection accuracy against distortions resulting from print-scan operations, good quality photocopies and benign attacks in accord with the future goal of soft authentication

    Data Hiding in Binary Images Using Orthogonal Embedding - A High Capacity Approach

    Get PDF
    The growth of high speed computer networks and the Internet, in particular, has increased the ease of Information Communication. In comparison with Analog media, Digital media offers several distinct advantages such as high quality, easy editing, high fidelity copying, compression etc. But this type advancement in the field of data communication in other sense has hiked the fear of getting the data snooped at the time of sending it from the sender to the receiver. Information Security is becoming an inseparable part of Data Communication. In order to address this Information Security, Digital Watermarking plays an important role. Watermarking Techniques are used to hide a small amount of data in such a way that no one apart from the sender and intended recipient even realizes there is a hidden message. This paper proposed a high capacity data hiding approach for binary images in morphological transform domain for authentication purpose so that the image will look unchanged to human visual system

    A Framework for Multimedia Data Hiding (Security)

    Get PDF
    With the proliferation of multimedia data such as images, audio, and video, robust digital watermarking and data hiding techniques are needed for copyright protection, copy control, annotation, and authentication. While many techniques have been proposed for digital color and grayscale images, not all of them can be directly applied to binary document images. The difficulty lies in the fact that changing pixel values in a binary document could introduce Irregularities that is very visually noticeable. We have seen but limited number of papers proposing new techniques and ideas for document image watermarking and data hiding. In this paper, we present an overview and summary of recent developments on this important topic, and discuss important issues such as robustness and data hiding capacity of the different techniques

    Tamper Detection in Text Document

    Get PDF
    Although text document images authentication is difficult due to the binary nature and clear separation between the background and foreground but it is getting higher demand for many applications. Most previous researches in this field depend on insertion watermark in the document, the drawback in these techniques lie in the fact that changing pixel values in a binary document could introduce irregularities that are very visually noticeable. In this paper, a new method is proposed for object-based text document authentication, in which I propose a different approach where a text document is signed by shifting individual words slightly left or right from their original positions to make the center of gravity for each line fall in with the middle point of intended line. Any modification, addition or deletion in a letter, word, or line in the document will be detected

    Information Analysis for Steganography and Steganalysis in 3D Polygonal Meshes

    Get PDF
    Information hiding, which embeds a watermark/message over a cover signal, has recently found extensive applications in, for example, copyright protection, content authentication and covert communication. It has been widely considered as an appealing technology to complement conventional cryptographic processes in the field of multimedia security by embedding information into the signal being protected. Generally, information hiding can be classified into two categories: steganography and watermarking. While steganography attempts to embed as much information as possible into a cover signal, watermarking tries to emphasize the robustness of the embedded information at the expense of embedding capacity. In contrast to information hiding, steganalysis aims at detecting whether a given medium has hidden message in it, and, if possible, recover that hidden message. It can be used to measure the security performance of information hiding techniques, meaning a steganalysis resistant steganographic/watermarking method should be imperceptible not only to Human Vision Systems (HVS), but also to intelligent analysis. As yet, 3D information hiding and steganalysis has received relatively less attention compared to image information hiding, despite the proliferation of 3D computer graphics models which are fairly promising information carriers. This thesis focuses on this relatively neglected research area and has the following primary objectives: 1) to investigate the trade-off between embedding capacity and distortion by considering the correlation between spatial and normal/curvature noise in triangle meshes; 2) to design satisfactory 3D steganographic algorithms, taking into account this trade-off; 3) to design robust 3D watermarking algorithms; 4) to propose a steganalysis framework for detecting the existence of the hidden information in 3D models and introduce a universal 3D steganalytic method under this framework. %and demonstrate the performance of the proposed steganalysis by testing it against six well-known 3D steganographic/watermarking methods. The thesis is organized as follows. Chapter 1 describes in detail the background relating to information hiding and steganalysis, as well as the research problems this thesis will be studying. Chapter 2 conducts a survey on the previous information hiding techniques for digital images, 3D models and other medium and also on image steganalysis algorithms. Motivated by the observation that the knowledge of the spatial accuracy of the mesh vertices does not easily translate into information related to the accuracy of other visually important mesh attributes such as normals, Chapters 3 and 4 investigate the impact of modifying vertex coordinates of 3D triangle models on the mesh normals. Chapter 3 presents the results of an empirical investigation, whereas Chapter 4 presents the results of a theoretical study. Based on these results, a high-capacity 3D steganographic algorithm capable of controlling embedding distortion is also presented in Chapter 4. In addition to normal information, several mesh interrogation, processing and rendering algorithms make direct or indirect use of curvature information. Motivated by this, Chapter 5 studies the relation between Discrete Gaussian Curvature (DGC) degradation and vertex coordinate modifications. Chapter 6 proposes a robust watermarking algorithm for 3D polygonal models, based on modifying the histogram of the distances from the model vertices to a point in 3D space. That point is determined by applying Principal Component Analysis (PCA) to the cover model. The use of PCA makes the watermarking method robust against common 3D operations, such as rotation, translation and vertex reordering. In addition, Chapter 6 develops a 3D specific steganalytic algorithm to detect the existence of the hidden messages embedded by one well-known watermarking method. By contrast, the focus of Chapter 7 will be on developing a 3D watermarking algorithm that is resistant to mesh editing or deformation attacks that change the global shape of the mesh. By adopting a framework which has been successfully developed for image steganalysis, Chapter 8 designs a 3D steganalysis method to detect the existence of messages hidden in 3D models with existing steganographic and watermarking algorithms. The efficiency of this steganalytic algorithm has been evaluated on five state-of-the-art 3D watermarking/steganographic methods. Moreover, being a universal steganalytic algorithm can be used as a benchmark for measuring the anti-steganalysis performance of other existing and most importantly future watermarking/steganographic algorithms. Chapter 9 concludes this thesis and also suggests some potential directions for future work

    A HARMONIC SECRET SHARING AND PERMUTATION BASED DOCUMENT IMAGE AUTHENTICATION

    Get PDF
    ABSTRACT In this paper, we are presenting blind authentication method which is based on harmonic secret sharing technique and permutation with data repair capability and error localization for document image and verification of its owner, with the use of the PNG image. We are generating a block based authentication from document image, and transform it into several shares using the Shamir secret sharing scheme, and embedding these shares into an alpha channel plane. The alpha channel plane is permuted with secret key and combined with the original image to form a PNG image. In the process of document image authentication, if the authentication signal computed from the current block content does not match the one extracted from the shares embedded in the alpha channel plane, a document image block localize as tamper block ,then a repairing process is implement else a document image block is authentic. In the repairing process a reverse Shamir technique is implementing for each tampered block after collecting any two or more shares from unmarked blocks. Also, owner verification process is implementing based on the secret key used for the permutation
    corecore