2,349 research outputs found

    Mining user activity as a context source for search and retrieval

    Get PDF
    Nowadays in information retrieval it is generally accepted that if we can better understand the context of users then this could help the search process, either at indexing time by including more metadata or at retrieval time by better modelling the user context. In this work we explore how activity recognition from tri-axial accelerometers can be employed to model a user's activity as a means of enabling context-aware information retrieval. In this paper we discuss how we can gather user activity automatically as a context source from a wearable mobile device and we evaluate the accuracy of our proposed user activity recognition algorithm. Our technique can recognise four kinds of activities which can be used to model part of an individual's current context. We discuss promising experimental results, possible approaches to improve our algorithms, and the impact of this work in modelling user context toward enhanced search and retrieval

    Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions.

    Get PDF
    Fall prediction is a multifaceted problem that involves complex interactions between physiological, behavioral, and environmental factors. Existing fall detection and prediction systems mainly focus on physiological factors such as gait, vision, and cognition, and do not address the multifactorial nature of falls. In addition, these systems lack efficient user interfaces and feedback for preventing future falls. Recent advances in internet of things (IoT) and mobile technologies offer ample opportunities for integrating contextual information about patient behavior and environment along with physiological health data for predicting falls. This article reviews the state-of-the-art in fall detection and prediction systems. It also describes the challenges, limitations, and future directions in the design and implementation of effective fall prediction and prevention systems

    Classification of sporting activities using smartphone accelerometers

    Get PDF
    In this paper we present a framework that allows for the automatic identification of sporting activities using commonly available smartphones. We extract discriminative informational features from smartphone accelerometers using the Discrete Wavelet Transform (DWT). Despite the poor quality of their accelerometers, smartphones were used as capture devices due to their prevalence in todayā€™s society. Successful classification on this basis potentially makes the technology accessible to both elite and non-elite athletes. Extracted features are used to train different categories of classifiers. No one classifier family has a reportable direct advantage in activity classification problems to date; thus we examine classifiers from each of the most widely used classifier families. We investigate three classification approaches; a commonly used SVM-based approach, an optimized classification model and a fusion of classifiers. We also investigate the effect of changing several of the DWT input parameters, including mother wavelets, window lengths and DWT decomposition levels. During the course of this work we created a challenging sports activity analysis dataset, comprised of soccer and field-hockey activities. The average maximum F-measure accuracy of 87% was achieved using a fusion of classifiers, which was 6% better than a single classifier model and 23% better than a standard SVM approach
    • ā€¦
    corecore