134 research outputs found

    Medical image analysis methods for anatomical surface reconstruction using tracked 3D ultrasound

    Get PDF
    The thesis focuses on a study of techniques for acquisition and reconstruction of surface data from anatomical objects by means of tracked 3D ultrasound. In the context of the work two experimental scanning systems are developed and tested on both artificial objects and biological tissues. The first system is based on the freehand ultrasound principle and utilizes a conventional 2D ultrasound transducer coupled with an electromechanical 3D position tracker. The main properties and the basic features of this system are discussed. A number of experiments show that its accuracy in the close to ideal conditions reaches 1.2 mm RMS. The second proposed system implements the sequential triggered scanning approach. The system consists of an ultrasound machine, a workstation and a scanning body (a moving tank filled with liquid and a transducer fixation block) that performs transducer positioning and tracking functions. The system is tested on artificial and real bones. The performed experiments illustrate that it provides significantly better accuracy than the freehand ultrasound (about 0.2 mm RMS) and allows acquiring regular data with a good precision. This makes such a system a promising tool for orthopaedic and trauma surgeons during contactless X-ray-free examinations of injured extremities. The second major subject of the thesis concerns development of medical image analysis methods for 3D surface reconstruction and 2D object detection. We introduce a method based on mesh-growing surface reconstruction that is designed for noisy and sparse data received from 3D tracked ultrasound scanners. A series of experiments on synthetic and ultrasound data show an appropriate reconstruction accuracy. The reconstruction error is measured as the averaged distance between the faces of the mesh and the points from the cloud. Dependently on the initial settings of the method the error varies in range 0.04 - 0.2% for artificial data and 0.3 - 0.7 mm for ultrasound bone data. The reconstructed surfaces correctly interpolate the original point clouds and demonstrate proper smoothness. The next significant problem considered in the work is 2D object detection. Although medical object detection is not integrated into the developed scanning systems, it can be used as a possible further extension of the systems for automatic detection of specific anatomical structures. We analyse the existent object detection methods and introduce a modification of the one based on the popular Generalized Hough Transform (GHT). Unlike the original GHT, the developed method is invariant to rotation and uniform scaling, and uses an intuitive two-point parametrization. We propose several implementations of the feature-to-vote conversion function with the corresponding vote analysis principles. Special attention is devoted to a study of the hierarchical vote analysis and its probabilistic properties. We introduce a parameter space subdivision strategy that reduces the probability of vote peak omission, and show that it can be efficiently implemented in practice using the Gumbel probability distribution

    Image based approach for early assessment of heart failure.

    Get PDF
    In diagnosing heart diseases, the estimation of cardiac performance indices requires accurate segmentation of the left ventricle (LV) wall from cine cardiac magnetic resonance (CMR) images. MR imaging is noninvasive and generates clear images; however, it is impractical to manually process the huge number of images generated to calculate the performance indices. In this dissertation, we introduce a novel, fast, robust, bi-directional coupled parametric deformable models that are capable of segmenting the LV wall borders using first- and second-order visual appearance features. These features are embedded in a new stochastic external force that preserves the topology of the LV wall to track the evolution of the parametric deformable models control points. We tested the proposed segmentation approach on 15 data sets in 6 infarction patients using the Dice similarity coefficient (DSC) and the average distance (AD) between the ground truth and automated segmentation contours. Our approach achieves a mean DSC value of 0.926Ā±0.022 and mean AD value of 2.16Ā±0.60 mm compared to two other level set methods that achieve mean DSC values of 0.904Ā±0.033 and 0.885Ā±0.02; and mean AD values of 2.86Ā±1.35 mm and 5.72Ā±4.70 mm, respectively. Also, a novel framework for assessing both 3D functional strain and wall thickening from 4D cine cardiac magnetic resonance imaging (CCMR) is introduced. The introduced approach is primarily based on using geometrical features to track the LV wall during the cardiac cycle. The 4D tracking approach consists of the following two main steps: (i) Initially, the surface points on the LV wall are tracked by solving a 3D Laplace equation between two subsequent LV surfaces; and (ii) Secondly, the locations of the tracked LV surface points are iteratively adjusted through an energy minimization cost function using a generalized Gauss-Markov random field (GGMRF) image model in order to remove inconsistencies and preserve the anatomy of the heart wall during the tracking process. Then the circumferential strains are straight forward calculated from the location of the tracked LV surface points. In addition, myocardial wall thickening is estimated by co-allocation of the corresponding points, or matches between the endocardium and epicardium surfaces of the LV wall using the solution of the 3D laplace equation. Experimental results on in vivo data confirm the accuracy and robustness of our method. Moreover, the comparison results demonstrate that our approach outperforms 2D wall thickening estimation approaches

    Multi-resolution dental image registration based on genetic algorithm

    Get PDF
    The Automated Dental Identification System (ADIS) is a Post Mortem Dental Identification System. This thesis presents dental image registration, required for the preprocessing steps of the image comparison component of ADIS. We proposed a multi resolution dental image registration based on genetic algorithms. The main objective of this research is to develop techniques for registration of extracted subject regions of interest with corresponding reference regions of interest.;We investigated and implemented registration using two multi resolution techniques namely image sub sampling and wavelet decomposition. Multi resolution techniques help in the reduction of search data since initial registration is carried at lower levels and results are updated as the levels of resolutions increase. We adopted edges as image features that needed to be aligned. Affine transformations were selected to transform the subject dental region of interest to achieve better alignment with the reference region of interest. These transformations are known to capture complex image distortions. The similarity between subject and reference image has been computed using Oriented Hausdorff Similarity measure that is robust to severe noise and image degradations. A genetic algorithm was adopted to search for the best transformation parameters that give maximum similarity score.;Testing results show that the developed registration algorithm yielded reasonable results in accuracy for dental test cases that contained slight misalignments. The relative percentage errors between the known and estimated transformation parameters were less than 20% with a termination criterion of a ten minute time limit. Further research is needed for dental cases that contain high degree of misalignment, noise and distortions

    Ultrasound tissue classification:A review

    Get PDF

    Functional and structural MRI image analysis for brain glial tumors treatment

    Get PDF
    This Ph.D Thesis is the outcome of a close collaboration between the Center for Research in Image Analysis and Medical Informatics (CRAIIM) of the Insubria University and the Operative Unit of Neurosurgery, Neuroradiology and Health Physics of the University Hospital ā€Circolo Fondazione Macchiā€, Varese. The project aim is to investigate new methodologies by means of whose, develop an integrated framework able to enhance the use of Magnetic Resonance Images, in order to support clinical experts in the treatment of patients with brain Glial tumor. Both the most common uses of MRI technology for non-invasive brain inspection were analyzed. From the Functional point of view, the goal has been to provide tools for an objective reliable and non-presumptive assessment of the brainā€™s areas locations, to preserve them as much as possible at surgery. From the Structural point of view, methodologies for fully automatic brain segmentation and recognition of the tumoral areas, for evaluating the tumor volume, the spatial distribution and to be able to infer correlation with other clinical data or trace growth trend, have been studied. Each of the proposed methods has been thoroughly assessed both qualitatively and quantitatively. All the Medical Imaging and Pattern Recognition algorithmic solutions studied for this Ph.D. Thesis have been integrated in GliCInE: Glioma Computerized Inspection Environment, which is a MATLAB prototype of an integrated analysis environment that oļ¬€ers, in addition to all the functionality speciļ¬cally described in this Thesis, a set of tools needed to manage Functional and Structural Magnetic Resonance Volumes and ancillary data related to the acquisition and the patient

    Echocardiography

    Get PDF
    The book "Echocardiography - New Techniques" brings worldwide contributions from highly acclaimed clinical and imaging science investigators, and representatives from academic medical centers. Each chapter is designed and written to be accessible to those with a basic knowledge of echocardiography. Additionally, the chapters are meant to be stimulating and educational to the experts and investigators in the field of echocardiography. This book is aimed primarily at cardiology fellows on their basic echocardiography rotation, fellows in general internal medicine, radiology and emergency medicine, and experts in the arena of echocardiography. Over the last few decades, the rate of technological advancements has developed dramatically, resulting in new techniques and improved echocardiographic imaging. The authors of this book focused on presenting the most advanced techniques useful in today's research and in daily clinical practice. These advanced techniques are utilized in the detection of different cardiac pathologies in patients, in contributing to their clinical decision, as well as follow-up and outcome predictions. In addition to the advanced techniques covered, this book expounds upon several special pathologies with respect to the functions of echocardiography
    • ā€¦
    corecore