2,596 research outputs found

    BayesNAS: A Bayesian Approach for Neural Architecture Search

    Get PDF
    One-Shot Neural Architecture Search (NAS) is a promising method to significantly reduce search time without any separate training. It can be treated as a Network Compression problem on the architecture parameters from an over-parameterized network. However, there are two issues associated with most one-shot NAS methods. First, dependencies between a node and its predecessors and successors are often disregarded which result in improper treatment over zero operations. Second, architecture parameters pruning based on their magnitude is questionable. In this paper, we employ the classic Bayesian learning approach to alleviate these two issues by modeling architecture parameters using hierarchical automatic relevance determination (HARD) priors. Unlike other NAS methods, we train the over-parameterized network for only one epoch then update the architecture. Impressively, this enabled us to find the architecture on CIFAR-10 within only 0.2 GPU days using a single GPU. Competitive performance can be also achieved by transferring to ImageNet. As a byproduct, our approach can be applied directly to compress convolutional neural networks by enforcing structural sparsity which achieves extremely sparse networks without accuracy deterioration.Comment: International Conference on Machine Learning 201

    A mean field method with correlations determined by linear response

    Full text link
    We introduce a new mean-field approximation based on the reconciliation of maximum entropy and linear response for correlations in the cluster variation method. Within a general formalism that includes previous mean-field methods, we derive formulas improving upon, e.g., the Bethe approximation and the Sessak-Monasson result at high temperature. Applying the method to direct and inverse Ising problems, we find improvements over standard implementations.Comment: 15 pages, 8 figures, 9 appendices, significant expansion on versions v1 and v

    A dual framework for low-rank tensor completion

    Full text link
    One of the popular approaches for low-rank tensor completion is to use the latent trace norm regularization. However, most existing works in this direction learn a sparse combination of tensors. In this work, we fill this gap by proposing a variant of the latent trace norm that helps in learning a non-sparse combination of tensors. We develop a dual framework for solving the low-rank tensor completion problem. We first show a novel characterization of the dual solution space with an interesting factorization of the optimal solution. Overall, the optimal solution is shown to lie on a Cartesian product of Riemannian manifolds. Furthermore, we exploit the versatile Riemannian optimization framework for proposing computationally efficient trust region algorithm. The experiments illustrate the efficacy of the proposed algorithm on several real-world datasets across applications.Comment: Aceepted to appear in Advances of Nueral Information Processing Systems (NIPS), 2018. A shorter version appeared in the NIPS workshop on Synergies in Geometric Data Analysis 201
    corecore