240 research outputs found

    A Functional Architecture Approach to Neural Systems

    Get PDF
    The technology for the design of systems to perform extremely complex combinations of real-time functionality has developed over a long period. This technology is based on the use of a hardware architecture with a physical separation into memory and processing, and a software architecture which divides functionality into a disciplined hierarchy of software components which exchange unambiguous information. This technology experiences difficulty in design of systems to perform parallel processing, and extreme difficulty in design of systems which can heuristically change their own functionality. These limitations derive from the approach to information exchange between functional components. A design approach in which functional components can exchange ambiguous information leads to systems with the recommendation architecture which are less subject to these limitations. Biological brains have been constrained by natural pressures to adopt functional architectures with this different information exchange approach. Neural networks have not made a complete shift to use of ambiguous information, and do not address adequate management of context for ambiguous information exchange between modules. As a result such networks cannot be scaled to complex functionality. Simulations of systems with the recommendation architecture demonstrate the capability to heuristically organize to perform complex functionality

    It's about Time

    Get PDF
    The purpose of this review/opinion paper is to argue that human cognitive neuroscience has focused too little attention on how the brain may use time and time-based coding schemes to represent, process, and transfer information within and across brain regions. Instead, the majority of cognitive neuroscience studies rest on the assumption of functional localization. Although the functional localization approach has brought us a long way towards a basic characterization of brain functional organization, there are methodological and theoretical limitations of this approach. Further advances in our understanding of neurocognitive function may come from examining how the brain performs computations and forms transient functional neural networks using the rich multi-dimensional information available in time. This approach rests on the assumption that information is coded precisely in time but distributed in space; therefore, measures of rapid neuroelectrophysiological dynamics may provide insights into brain function that cannot be revealed using localization-based approaches and assumptions. Space is not an irrelevant dimension for brain organization; rather, a more complete understanding of how brain dynamics lead to behavior dynamics must incorporate how the brain uses time-based coding and processing schemes

    Luminance, colour, viewpoint and border enhanced disparity energy model

    Get PDF
    The visual cortex is able to extract disparity information through the use of binocular cells. This process is reflected by the Disparity Energy Model, which describes the role and functioning of simple and complex binocular neuron populations, and how they are able to extract disparity. This model uses explicit cell parameters to mathematically determine preferred cell disparities, like spatial frequencies, orientations, binocular phases and receptive field positions. However, the brain cannot access such explicit cell parameters; it must rely on cell responses. In this article, we implemented a trained binocular neuronal population, which encodes disparity information implicitly. This allows the population to learn how to decode disparities, in a similar way to how our visual system could have developed this ability during evolution. At the same time, responses of monocular simple and complex cells can also encode line and edge information, which is useful for refining disparities at object borders. The brain should then be able, starting from a low-level disparity draft, to integrate all information, including colour and viewpoint perspective, in order to propagate better estimates to higher cortical areas.Portuguese Foundation for Science and Technology (FCT); LARSyS FCT [UID/EEA/50009/2013]; EU project NeuroDynamics [FP7-ICT-2009-6, PN: 270247]; FCT project SparseCoding [EXPL/EEI-SII/1982/2013]; FCT PhD grant [SFRH-BD-44941-2008

    Cognitive Learning and Memory Systems Using Spiking Neural Networks

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    • …
    corecore