637 research outputs found

    Pattern classification using principal components of cortical thickness and its discriminative pattern in schizophrenia

    Get PDF
    We proposed pattern classification based on principal components of cortical thickness between schizophrenic patients and healthy controls, which was trained using a leave-one-out cross-validation. The cortical thickness was measured by calculating the Euclidean distance between linked vertices on the inner and outer cortical surfaces. Principal component analysis was applied to each lobe for practical computational issues and stability of principal components. And, discriminative patterns derived at every vertex in the original feature space with respect to support vector machine were analyzed with definitive findings of brain abnormalities in schizophrenia for establishing practical confidence. It was simulated with 50 randomly selected validation set for the generalization and the average accuracy of classification was reported. This study showed that some principal components might be more useful than others for classification, but not necessarily matching the ordering of the variance amounts they explained. In particular, 40-70 principal components rearranged by a simple two-sample t-test which ranked the effectiveness of features were used for the best mean accuracy of simulated classification (frontal: (left(%)|right(%))=91.07|88.80, parietal: 91.40|91.53, temporal: 93.60|91.47, occipital: 88.80|91.60). And, discriminative power appeared more spatially diffused bilaterally in the several regions, especially precentral, postcentral, superior frontal and temporal, cingulate and parahippocampal gyri. Since our results of discriminative patterns derived from classifier were consistent with a previous morphological analysis of schizophrenia, it can be said that the cortical thickness is a reliable feature for pattern classification and the potential benefits of such diagnostic tools are enhanced by our finding

    Grey-matter texture abnormalities and reduced hippocampal volume are distinguishing features of schizophrenia

    Get PDF
    Neurodevelopmental processes are widely believed to underlie schizophrenia. Analysis of brain texture from conventional magnetic resonance imaging (MRI) can detect disturbance in brain cytoarchitecture. We tested the hypothesis that patients with schizophrenia manifest quantitative differences in brain texture that, alongside discrete volumetric changes, may serve as an endophenotypic biomarker. Texture analysis (TA) of grey matter distribution and voxel-based morphometry (VBM) of regional brain volumes were applied to MRI scans of 27 patients with schizophrenia and 24 controls. Texture parameters (uniformity and entropy) were also used as covariates in VBM analyses to test for correspondence with regional brain volume. Linear discriminant analysis tested if texture and volumetric data predicted diagnostic group membership (schizophrenia or control). We found that uniformity and entropy of grey matter differed significantly between individuals with schizophrenia and controls at the fine spatial scale (filter width below 2 mm). Within the schizophrenia group, these texture parameters correlated with volumes of the left hippocampus, right amygdala and cerebellum. The best predictor of diagnostic group membership was the combination of fine texture heterogeneity and left hippocampal size. This study highlights the presence of distributed grey-matter abnormalities in schizophrenia, and their relation to focal structural abnormality of the hippocampus. The conjunction of these features has potential as a neuroimaging endophenotype of schizophrenia

    Classification of First-Episode Schizophrenia Patients and Healthy Subjects by Automated MRI Measures of Regional Brain Volume and Cortical Thickness

    Get PDF
    BACKGROUND: Although structural magnetic resonance imaging (MRI) studies have repeatedly demonstrated regional brain structural abnormalities in patients with schizophrenia, relatively few MRI-based studies have attempted to distinguish between patients with first-episode schizophrenia and healthy controls. METHOD: Three-dimensional MR images were acquired from 52 (29 males, 23 females) first-episode schizophrenia patients and 40 (22 males, 18 females) healthy subjects. Multiple brain measures (regional brain volume and cortical thickness) were calculated by a fully automated procedure and were used for group comparison and classification by linear discriminant function analysis. RESULTS: Schizophrenia patients showed gray matter volume reductions and cortical thinning in various brain regions predominantly in prefrontal and temporal cortices compared with controls. The classifiers obtained from 66 subjects of the first group successfully assigned 26 subjects of the second group with accuracy above 80%. CONCLUSION: Our results showed that combinations of automated brain measures successfully differentiated first-episode schizophrenia patients from healthy controls. Such neuroimaging approaches may provide objective biological information adjunct to clinical diagnosis of early schizophrenia

    Individual classification of ADHD patients by integrating multiscale neuroimaging markers and advanced pattern recognition techniques

    Get PDF
    Accurate classification or prediction of the brain state across individual subject, i.e., healthy, or with brain disorders, is generally a more difficult task than merely finding group differences. The former must be approached with highly informative and sensitive biomarkers as well as effective pattern classification/feature selection approaches. In this paper, we propose a systematic methodology to discriminate attention deficit hyperactivity disorder (ADHD) patients from healthy controls on the individual level. Multiple neuroimaging markers that are proved to be sensitive features are identified, which include multiscale characteristics extracted from blood oxygenation level dependent (BOLD) signals, such as regional homogeneity (ReHo) and amplitude of low-frequency fluctuations. Functional connectivity derived from Pearson, partial, and spatial correlation is also utilized to reflect the abnormal patterns of functional integration, or, dysconnectivity syndromes in the brain. These neuroimaging markers are calculated on either voxel or regional level. Advanced feature selection approach is then designed, including a brain-wise association study (BWAS). Using identified features and proper feature integration, a support vector machine (SVM) classifier can achieve a cross-validated classification accuracy of 76.15% across individuals from a large dataset consisting of 141 healthy controls and 98 ADHD patients, with the sensitivity being 63.27% and the specificity being 85.11%. Our results show that the most discriminative features for classification are primarily associated with the frontal and cerebellar regions. The proposed methodology is expected to improve clinical diagnosis and evaluation of treatment for ADHD patient, and to have wider applications in diagnosis of general neuropsychiatric disorders

    FUNCTIONAL NETWORK CONNECTIVITY IN HUMAN BRAIN AND ITS APPLICATIONS IN AUTOMATIC DIAGNOSIS OF BRAIN DISORDERS

    Get PDF
    The human brain is one of the most complex systems known to the mankind. Over the past 3500 years, mankind has constantly investigated this remarkable system in order to understand its structure and function. Emerging of neuroimaging techniques such as functional magnetic resonance imaging (fMRI) have opened a non-invasive in-vivo window into brain function. Moreover, fMRI has made it possible to study brain disorders such as schizophrenia from a different angle unknown to researchers before. Human brain function can be divided into two categories: functional segregation and integration. It is well-understood that each region in the brain is specialized in certain cognitive or motor tasks. The information processed in these specialized regions in different temporal and spatial scales must be integrated in order to form a unified cognition or behavior. One way to assess functional integration is by measuring functional connectivity (FC) among specialized regions in the brain. Recently, there is growing interest in studying the FC among brain functional networks. This type of connectivity, which can be considered as a higher level of FC, is termed functional network connectivity (FNC) and measures the statistical dependencies among brain functional networks. Each functional network may consist of multiple remote brain regions. Four studies related to FNC are presented in this work. First FNC is compared during the resting-state and auditory oddball task (AOD). Most previous FNC studies have been focused on either resting-state or task-based data but have not directly compared these two. Secondly we propose an automatic diagnosis framework based on resting-state FNC features for mental disorders such as schizophrenia. Then, we investigate the proper preprocessing for fMRI time-series in order to conduct FNC studies. Specifically the impact of autocorrelated time-series on FNC will be comprehensively assessed in theory, simulation and real fMRI data. At the end, the notion of autoconnectivity as a new perspective on human brain functionality will be proposed. It will be shown that autoconnectivity is cognitive-state and mental-state dependent and we discuss how this source of information, previously believed to originate from physical and physiological noise, can be used to discriminate schizophrenia patients with high accuracy

    Hum Brain Mapp

    Get PDF
    The objective of this research was to determine whether fractional anisotropy (FA) and mean diffusivity (MD) maps derived from diffusion tensor imaging (DTI) of the brain are able to reliably differentiate patients with schizophrenia from healthy volunteers. DTI and high resolution structural magnetic resonance scans were acquired in 50 patients with schizophrenia and 50 age- and sex-matched healthy volunteers. FA and MD maps were estimated from the DTI data and spatially normalized to the Montreal Neurologic Institute standard stereotactic space. Individuals were divided randomly into two groups of 50, a training set, and a test set, each comprising 25 patients and 25 healthy volunteers. A pattern classifier was designed using Fisher's linear discriminant analysis (LDA) based on the training set of images to categorize individuals in the test set as either patients or healthy volunteers. Using the FA maps, the classifier correctly identified 94% of the cases in the test set (96% sensitivity and 92% specificity). The classifier achieved 98% accuracy (96% sensitivity and 100% specificity) when using the MD maps as inputs to distinguish schizophrenia patients from healthy volunteers in the test dataset. Utilizing FA and MD data in combination did not significantly alter the accuracy (96% sensitivity and specificity). Patterns of water self-diffusion in the brain as estimated by DTI can be used in conjunction with automated pattern recognition algorithms to reliably distinguish between patients with schizophrenia and normal control subjects.K01 MH001990/MH/NIMH NIH HHS/United StatesK01 MH001990-05/MH/NIMH NIH HHS/United StatesM01 PR018535/PR/OCPHP CDC HHS/United StatesMH01990/MH/NIMH NIH HHS/United StatesMH60004/MH/NIMH NIH HHS/United StatesMH60374/MH/NIMH NIH HHS/United StatesMH76995/MH/NIMH NIH HHS/United StatesP30 MH060575/MH/NIMH NIH HHS/United StatesP30 MH074543/MH/NIMH NIH HHS/United StatesP30 MH074543-05/MH/NIMH NIH HHS/United StatesP50 MH080173-02/MH/NIMH NIH HHS/United StatesR01 MH060004/MH/NIMH NIH HHS/United StatesR01 MH060004-09/MH/NIMH NIH HHS/United StatesR01 MH060374/MH/NIMH NIH HHS/United StatesR01 MH060374-05/MH/NIMH NIH HHS/United StatesR01 MH076995/MH/NIMH NIH HHS/United StatesR01 MH076995-03/MH/NIMH NIH HHS/United StatesR03EB8201/EB/NIBIB NIH HHS/United States2011-01-01T00:00:00Z20205252PMC289698

    Evaluation of machine learning algorithms and structural features for optimal MRI-based diagnostic prediction in psychosis

    Full text link
    A relatively large number of studies have investigated the power of structural magnetic resonance imaging (sMRI) data to discriminate patients with schizophrenia from healthy controls. However, very few of them have also included patients with bipolar disorder, allowing the clinically relevant discrimination between both psychotic diagnostics. To assess the efficacy of sMRI data for diagnostic prediction in psychosis we objectively evaluated the discriminative power of a wide range of commonly used machine learning algorithms (ridge, lasso, elastic net and L0 norm regularized logistic regressions, a support vector classifier, regularized discriminant analysis, random forests and a Gaussian process classifier) on main sMRI features including grey and white matter voxel-based morphometry (VBM), vertex-based cortical thickness and volume, region of interest volumetric measures and wavelet-based morphometry (WBM) maps. All possible combinations of algorithms and data features were considered in pairwise classifications of matched samples of healthy controls (N = 127), patients with schizophrenia (N = 128) and patients with bipolar disorder (N = 128). Results show that the selection of feature type is important, with grey matter VBM (without data reduction) delivering the best diagnostic prediction rates (averaging over classifiers: schizophrenia vs. healthy 75%, bipolar disorder vs. healthy 63% and schizophrenia vs. bipolar disorder 62%) whereas algorithms usually yielded very similar results. Indeed, those grey matter VBM accuracy rates were not even improved by combining all feature types in a single prediction model. Further multi-class classifications considering the three groups simultaneously made evident a lack of predictive power for the bipolar group, probably due to its intermediate anatomical features, located between those observed in healthy controls and those found in patients with schizophrenia. Finally, we provide MRIPredict (https://www.nitrc.org/projects/mripredict/), a free tool for SPM, FSL and R, to easily carry out voxelwise predictions based on VBM images

    Combination of Resting State fMRI, DTI, and sMRI Data to Discriminate Schizophrenia by N-way MCCA + jICA

    Get PDF
    Multimodal brain imaging data have shown increasing utility in answering both scientifically interesting and clinically relevant questions. Each brain imaging technique provides a different view of brain function or structure, while multimodal fusion capitalizes on the strength of each and may uncover hidden relationships that can merge findings from separate neuroimaging studies. However, most current approaches have focused on pair-wise fusion and there is still relatively little work on N-way data fusion and examination of the relationships among multiple data types. We recently developed an approach called “mCCA + jICA” as a novel multi-way fusion method which is able to investigate the disease risk factors that are either shared or distinct across multiple modalities as well as the full correspondence across modalities. In this paper, we applied this model to combine resting state fMRI (amplitude of low-frequency fluctuation, ALFF), gray matter (GM) density, and DTI (fractional anisotropy, FA) data, in order to elucidate the abnormalities underlying schizophrenia patients (SZs, n = 35) relative to healthy controls (HCs, n = 28). Both modality-common and modality-unique abnormal regions were identified in SZs, which were then used for successful classification for seven modality-combinations, showing the potential for a broad applicability of the mCCA + jICA model and its results. In addition, a pair of GM-DTI components showed significant correlation with the positive symptom subscale of Positive and Negative Syndrome Scale (PANSS), suggesting that GM density changes in default model network along with white-matter disruption in anterior thalamic radiation are associated with increased positive PANSS. Findings suggest the DTI anisotropy changes in frontal lobe may relate to the corresponding functional/structural changes in prefrontal cortex and superior temporal gyrus that are thought to play a role in the clinical expression of SZ

    Generative Embedding for Model-Based Classification of fMRI Data

    Get PDF
    Decoding models, such as those underlying multivariate classification algorithms, have been increasingly used to infer cognitive or clinical brain states from measures of brain activity obtained by functional magnetic resonance imaging (fMRI). The practicality of current classifiers, however, is restricted by two major challenges. First, due to the high data dimensionality and low sample size, algorithms struggle to separate informative from uninformative features, resulting in poor generalization performance. Second, popular discriminative methods such as support vector machines (SVMs) rarely afford mechanistic interpretability. In this paper, we address these issues by proposing a novel generative-embedding approach that incorporates neurobiologically interpretable generative models into discriminative classifiers. Our approach extends previous work on trial-by-trial classification for electrophysiological recordings to subject-by-subject classification for fMRI and offers two key advantages over conventional methods: it may provide more accurate predictions by exploiting discriminative information encoded in ‘hidden’ physiological quantities such as synaptic connection strengths; and it affords mechanistic interpretability of clinical classifications. Here, we introduce generative embedding for fMRI using a combination of dynamic causal models (DCMs) and SVMs. We propose a general procedure of DCM-based generative embedding for subject-wise classification, provide a concrete implementation, and suggest good-practice guidelines for unbiased application of generative embedding in the context of fMRI. We illustrate the utility of our approach by a clinical example in which we classify moderately aphasic patients and healthy controls using a DCM of thalamo-temporal regions during speech processing. Generative embedding achieves a near-perfect balanced classification accuracy of 98% and significantly outperforms conventional activation-based and correlation-based methods. This example demonstrates how disease states can be detected with very high accuracy and, at the same time, be interpreted mechanistically in terms of abnormalities in connectivity. We envisage that future applications of generative embedding may provide crucial advances in dissecting spectrum disorders into physiologically more well-defined subgroups
    corecore