5 research outputs found

    Stationary-State Statistics of a Binary Neural Network Model with Quenched Disorder

    Full text link
    We study the statistical properties of the stationary firing-rate states of a neural network model with quenched disorder. The model has arbitrary size, discrete-time evolution equations and binary firing rates, while the topology and the strength of the synaptic connections are randomly generated from known, generally arbitrary, probability distributions. We derived semi-analytical expressions of the occurrence probability of the stationary states and the mean multistability diagram of the model, in terms of the distribution of the synaptic connections and of the external stimuli to the network. Our calculations rely on the probability distribution of the bifurcation points of the stationary states with respect to the external stimuli, which can be calculated in terms of the permanent of special matrices, according to extreme value theory. While our semi-analytical expressions are exact for any size of the network and for any distribution of the synaptic connections, we also specialized our calculations to the case of statistically-homogeneous multi-population networks. In the specific case of this network topology, we calculated analytically the permanent, obtaining a compact formula that outperforms of several orders of magnitude the Balasubramanian-Bax-Franklin-Glynn algorithm. To conclude, by applying the Fisher-Tippett-Gnedenko theorem, we derived asymptotic expressions of the stationary-state statistics of multi-population networks in the large-network-size limit, in terms of the Gumbel (double exponential) distribution. We also provide a Python implementation of our formulas and some examples of the results generated by the code.Comment: 30 pages, 6 figures, 2 supplemental Python script

    Advances in numerical bifurcation software : MatCont

    Get PDF
    The mathematical background of MatCont, a freely available toolbox, is bifurcation theory which is a field of hard analysis. Bifurcation theory treats dynamical systems from a high-level point of view. In the case of continuous dynamical systems this means that it considers nonlinear differential equations without any special form and without restrictions except for differentiability up to a sufficiently high order (in the present state of MatCont never higher than five.) The number of equations is not fixed in advance and neither is the number of variables or the number of parameters, some of which can be active and others not. The aim of bifurcation theory is to understand and classify the qualitative changes of the solutions to the differential equations under variation of the parameters. This knowledge cannot be applied to practical situations without numerical software, except in some artificially constructed situations. Matcont is a toolbox that computes bifurcation diagrams through numerical methods, namely continuation. This dissertation describes the advances and innovations that were made including the detection and continuation of new bifurcations in discrete-time systems
    corecore