7,964 research outputs found

    Chiral active fluids: Odd viscosity, active turbulence, and directed flows of hydrodynamic microrotors

    Get PDF
    While the number of publications on rotating active matter has rapidly increased in recent years, studies on purely hydrodynamically interacting rotors on the microscale are still rare, especially from the perspective of particle based hydrodynamic simulations. The work presented here targets to fill this gap. By means of high-performance computer simulations, performed in a highly parallelised fashion on graphics processing units, the dynamics of ensembles of up to 70,000 rotating colloids immersed in an explicit mesoscopic solvent consisting out of up to 30 million fluid particles, are investigated. Some of the results presented in this thesis have been worked out in collaboration with experimentalists, such that the theoretical considerations developed in this thesis are supported by experiments, and vice versa. The studied system, modelled in order to resemble the essential physics of the experimentally realisable system, consists out of rotating magnetic colloidal particles, i.e., (micro-)rotors, rotating in sync to an externally applied magnetic field, where the rotors solely interact via hydrodynamic and steric interactions. Overall, the agreement between simulations and experiments is very good, proving that hydrodynamic interactions play a key role in this and related systems. While already an isolated rotating colloid is driven out of equilibrium, only collections of two or more rotors have experimentally shown to be able to convert the rotational energy input into translational dynamics in an orbital rotating fashion. The rotating colloids inject circular flows into the fluid, such that detailed balance is broken, and it is not a priori known whether equilibrium properties of colloids can be extended to isolated rotating colloids. A joint theoretical and experimental analysis of isolated, pairs, and small groups of hydrodynamically interacting rotors is given in chapter 2. While the translational dynamics of isolated rotors effectively resemble the dynamics of non-rotating colloids, the orbital rotation of pairs of rotors can be described with leading order hydrodynamics and a two-dimensional analogy of FaxĂ©n’s law is derived. In chapter 3, a homogeneously distributed ensemble of rotors (bulk) as a realisation of a chiral active fluid is studied and it is explicitly shown computationally and experimentally that it carries odd viscosity. The mutual orbital translation of rotors and an increase of the effective solvent viscosity with rotor density lead to a non-monotonous behaviour of the average translational velocity. Meanwhile, the rotor suspension bears a finite osmotic compressibility resulting from the long-ranged nature of hydrody- namic interactions such that rotational and odd stresses are transmitted through the solvent also at small and intermediate rotor densities. Consequently, density inhomogeneities predicted for chiral active fluids with odd viscosity can be found and allow for an explicit measurement of odd viscosity in simulations and experiments. At intermediate densities, the collective dynamics shows the emergence of multi-scale vortices and chaotic motion which is identified as active turbulence with a self-similar power-law decay in the energy spectrum, showing that the injected energy on the rotor scale is transported to larger scales, similar to the inverse energy cascade of clas- sical two-dimensional turbulence. While either odd viscosity or active turbulence have been reported in chiral active matter previously, the system studied here shows that the emergence of both simultaneously is possible resulting from the osmotic compressibility and hydrodynamic mediation of odd and active stresses. The collective dynamics of colloids rotating out of phase, i.e., where a constant torque instead of a constant angular velocity is applied, is shown to be qualitatively very similar. However, at smaller densities, local density inhomogeneities imply position dependent angular velocities of the rotors resulting from inter-rotor friction. While the friction of a quasi-2D layer of active colloids with the substrate is often not easily modifiable in experiments, the incorporation of substrate friction into the simulation models typically implies a considerable increase in computational effort. In chapter 4, a very efficient way of incorporating the friction with a substrate into a two-dimensional multiparticle collision dynamics solvent is introduced, allowing for an explicit investigation of the influences of substrate on active dynamics. For the rotor fluid, it is explicitly shown that the influence of the substrate friction results in a cutoff of the hydrodynamic interaction length, such that the maximum size of the formed vortices is controlled by the substrate friction, also resulting in a cutoff in the energy spectrum, because energy is taken out of the system at the respective length. These findings are in agreement with the experiments. Since active particles in confinement are known to organise in states of collective dynamics, ensembles of rotationally actuated colloids are studied in circular confinement and in the presence of periodic obstacle lattices in chapters 5 and 6, respectively. The results show that the chaotic active turbulent transport of rotors in suspension can be enhanced and guided resulting from edge flows generated at the boundaries, as has recently been reported for a related chiral active system. The consequent collective rotor dynamics can be regarded as a superposition of active turbulent and imposed flows, leading to on average stationary flows. In contrast to the bulk dynamics, the imposed flows inject additional energy into the system on the long length scales, and the same scaling behaviour of the energy spectrum as in bulk is only obtained if the energy injection scales, due to the mutual generation of rotor translational dynamics throughout the system and the edge flows, are well separated. The combination of edge flow and entropic layering at the boundaries leads to oscillating hydrodynamic stresses and consequently to an oscillating vorticity profile. In the presence of odd viscosity, this consequently leads to non-trivial steady-state density modulations at the boundary, resulting from a balance of osmotic pressure and odd stresses. Relevant for the efficient dispersion and mixing of inert particles on the mesoscale by means of active turbulent mixing powered by rotors, a study of the dynamics of a binary mixture consisting out of rotors and passive particles is presented in chapter 7. Because the rotors are not self-propelled, but the translational dynamics is induced by the surrounding rotors, the passive particles, which do not inject further energy into the system, are transported according to the same mechanism as the rotors. The collective dynamics thus resembles the pure rotor bulk dynamics at the respective density of only rotors. However, since no odd stresses act between the passive particles, only mutual rotor interactions lead to odd stresses leading to the accumulation of rotors in the regions of positive vorticity. This density increase is associated with a pressure increase, which balances the odd stresses acting on the rotors. However, the passive particles are only subject to the accumulation induced pressure increase such that these particles are transported into the areas of low rotor concentration, i.e., the regions of negative vorticity. Under conditions of sustained vortex flow, this results in segregation of both particle types. Since local symmetry breaking can convert injected rotational into translational energy, microswimmers can be constructed out of rotor materials when a suitable breaking of symmetry is kept in the vicinity of a rotor. One hypothetical realisation, i.e., a coupled rotor pair consisting out of two rotors of opposite angular velocity and of fixed distance, termed a birotor, are studied in chapter 8. The birotor pumps the fluid into one direction and consequently translates into the opposite direction, and creates a flow field reminiscent of a source doublet, or sliplet flow field. Fixed in space the birotor might be an interesting realisation of a microfluidic pump. The trans- lational dynamics of a birotor can be mapped onto the active Brownian particle model for single swimmers. However, due to the hydrodynamic interactions among the rotors, the birotor ensemble dynamics do not show the emergence of stable motility induced clustering. The reason for this is the flow created by birotor in small aggregates which effectively pushes further arriving birotors away from small aggregates, which eventually are all dispersed by thermal fluctuations

    The Future of Work and Digital Skills

    Get PDF
    The theme for the events was "The Future of Work and Digital Skills". The 4IR caused a hollowing out of middle-income jobs (Frey & Osborne, 2017) but COVID-19 exposed the digital gap as survival depended mainly on digital infrastructure and connectivity. Almost overnight, organizations that had not invested in a digital strategy suddenly realized the need for such a strategy and the associated digital skills. The effects have been profound for those who struggled to adapt, while those who stepped up have reaped quite the reward.Therefore, there are no longer certainties about what the world will look like in a few years from now. However, there are certain ways to anticipate the changes that are occurring and plan on how to continually adapt to an increasingly changing world. Certain jobs will soon be lost and will not come back; other new jobs will however be created. Using data science and other predictive sciences, it is possible to anticipate, to the extent possible, the rate at which certain jobs will be replaced and new jobs created in different industries. Accordingly, the collocated events sought to bring together government, international organizations, academia, industry, organized labour and civil society to deliberate on how these changes are occurring in South Africa, how fast they are occurring and what needs to change in order to prepare society for the changes.Deutsche Gesellschaft fĂŒr Internationale Zusammenarbeit (GIZ) British High Commission (BHC)School of Computin

    Management controls, government regulations, customer involvement: Evidence from a Chinese family-owned business

    Get PDF
    This research reports on a case study of a family-owned elevator manufacturing company in China, where management control was sandwiched between the state policies and global customer production requirements. By analysing the role of government and customer, this thesis aimed to illustrate how management control operated in a family-owned business and to see how and why they do management control differently. In particular, it focused on how international production standards and existing Chinese industry policies translated into a set of the management control practices through a local network within the family-owned business I studied. Based on an ethnographic approach to research, I spent six months in the field, conducted over 30 interviews, several conservations, and reviewed relevant internal documents to understand how management control (MC) techniques with humans cooperated in the company. I also understood how two layers of pressure have shaped company behaviour, and how a company located in a developing country is connecting with global network. I also found there is considerable tension among key actors and investigated how the company responded and managed it. Drawing on Actor Network Theory (ANT), I analysed the interviews from key actors, examined the role of government regulations and customer requirements to see how management control being managed under two layers of pressure, i.e., the government regulations (e.g., labour, tax, environment control) and customer requirement (e.g., quality and production control). Management controls were an obligatory passage point (OPP), and transformation of those elements of Western production requirements and government requirements arrived at the Chinese local factory and influenced management control and budgeting. The findings suggest that management control systems are not only a set of technical procedures, but it is also about managing tensions. This understanding shows a linear perspective on MC practices rather than a social perspective. However, when we use ANT as a theoretical perspective, we see those actors who, being obliged and sandwiched, and controlled by external forces for them to follow. Consequently, human actors must work in an unavoidable OPP. This is the tension they face which constructed mundane practices of MC. Hence, MCs are managing such tensions. This study contributes to management control research by analysing management controls in terms of OPP, extends our understanding by illustrating the role of the government and customers, and our understanding of family-owned business from a management controls perspective in a developing country

    Hunting Wildlife in the Tropics and Subtropics

    Get PDF
    The hunting of wild animals for their meat has been a crucial activity in the evolution of humans. It continues to be an essential source of food and a generator of income for millions of Indigenous and rural communities worldwide. Conservationists rightly fear that excessive hunting of many animal species will cause their demise, as has already happened throughout the Anthropocene. Many species of large mammals and birds have been decimated or annihilated due to overhunting by humans. If such pressures continue, many other species will meet the same fate. Equally, if the use of wildlife resources is to continue by those who depend on it, sustainable practices must be implemented. These communities need to remain or become custodians of the wildlife resources within their lands, for their own well-being as well as for biodiversity in general. This title is also available via Open Access on Cambridge Core

    Investigating PAX6 and SOX2 dynamic interactions at the single molecule level in live cells

    Get PDF
    The abundance of transcription factor (TF) molecules in the nuclei of eukaryotic cells are in the range of thousands. However, the functional binding sites of most TFs lie in the range of hundreds. This suggests that there is a surplus of the number of molecules for many TFs, relative to their binding sites at any given time. Nevertheless, precise TF levels are instrumental for normal development and maintenance, with haploinsufficiency (namely lowering the dosage of a TF by half) being a hallmark of many TF-related human developmental disorders. Qualitative methods assessing TF binding such as chromatin immunoprecipitation, provide static information, from fixed cell populations and so fail to provide insight into TF dynamic behaviour. Live-cell imaging methodologies such as Fluorescence Correlation Spectroscopy (FCS) offer the ability to measure kinetics of binding to chromatin, protein-protein interactions, absolute concentrations of molecules and the underlying cell-to-cell variability. SOX2 and PAX6 TFs exhibit haploinsufficiency in humans. Heterozygous point mutations, deletions or insertions in these genes can lead to a plethora of abnormal ocular developmental disorders (e.g. coloboma, aniridia, microphthalmia, anopthalmia). SOX2 encodes a high-mobility group (HMG) domain-containing TF, essential for maintaining self-renewal of embryonic stem cells and is expressed in proliferating central nervous system (CNS) progenitors. PAX6 contains two DNA binding domains; a PAIRED domain (PD) and a homeodomain (HD). Both DNA binding domains present in PAX6 (PD and HD) can function either jointly, or separately, to regulate a plethora of genes implicated in the development and maintenance of the CNS, the eye and the pancreas. Despite existing genetic and phenotypic evidence, it remains unclear how PAX6 and SOX2 influence each other at the molecular level and how sensitive their stoichiometry is during ocular development. In this thesis I investigated the dynamic interplay between PAX6/SOX2 and chromatin in live cells, at the molecular level. I compared wild-type protein function with pathogenic missense variants using advanced fluorescence microscopy techniques and assessed how these mutations quantitatively and qualitatively affected molecular behaviour. My results showed that both SOX2 and PAX6 pathogenic missense mutants display differential subnuclear localisation, as well as altered protein-protein and protein-chromatin interactions, linking molecular diffusion to pathogenic phenotype in humans. More importantly, I identified a novel role of SOX2 in stabilising PAX6- chromatin complexes in live cells, providing further insight into the complex and dynamic relation of PAX6 and SOX2 in ocular tissue specification, maintenance and development

    Joint optimization of depth and ego-motion for intelligent autonomous vehicles

    Get PDF
    The three-dimensional (3D) perception of autonomous vehicles is crucial for localization and analysis of the driving environment, while it involves massive computing resources for deep learning, which can't be provided by vehicle-mounted devices. This requires the use of seamless, reliable, and efficient massive connections provided by the 6G network for computing in the cloud. In this paper, we propose a novel deep learning framework with 6G enabled transport system for joint optimization of depth and ego-motion estimation, which is an important task in 3D perception for autonomous driving. A novel loss based on feature map and quadtree is proposed, which uses feature value loss with quadtree coding instead of photometric loss to merge the feature information at the texture-less region. Besides, we also propose a novel multi-level V-shaped residual network to estimate the depths of the image, which combines the advantages of V-shaped network and residual network, and solves the problem of poor feature extraction results that may be caused by the simple fusion of low-level and high-level features. Lastly, to alleviate the influence of image noise on pose estimation, we propose a number of parallel sub-networks that use RGB image and its feature map as the input of the network. Experimental results show that our method significantly improves the quality of the depth map and the localization accuracy and achieves the state-of-the-art performance

    Genetics and genomics of myxomatous mitral valve disease in dogs

    Get PDF
    As a result of its unique evolutionary history, the modern dog (Canis lupus familiaris) has a simplified genetic landscape that makes it a strong model for investigating the genetic basis of breed specific traits and diseases. This thesis applies genomic methodologies to a complex disease, myxomatous mitral valve disease (MMVD), with the primary aim of improving our understanding of its genetic basis. MMVD is an acquired disease of the dog that causes valvular dysfunction and may result in the development of congestive heart failure (CHF). In dogs, MMVD is the most frequent cause of cardiovascular morbidity and mortality, and despite a thorough understanding of the clinical aspects, the genetic mechanisms that drive disease onset and progression are uncertain. Current MMVD research supports a polygenic mode of inheritance and exemplifies the difficulty in identifying disease risk variants in complex traits. In this thesis, genomic workflows are used to investigate MMVD in an Australian population of Cavalier King Charles Spaniels (CKCS), a breed disproportionately affected by the trait. I first assessed the strength of MMVD phenotypes for use in comparative genomic studies. Then, through bioinformatic approaches, I investigated the genetic landscape of the disease in this breed. Using genomic tools developed for the dog and a combined approach of objective phenotyping, I was able to thoroughly explore the genetics and genomics of MMVD in the CKCS using different types of genomic analyses. In doing so, I was able to demonstrate the utility of pedigreed breeds in the investigation of complex traits and the versatility of genomic datasets. Throughout this thesis MMVD associated loci, candidate genes and putative functional variants are reported

    A Review of Indoor Millimeter Wave Device-based Localization and Device-free Sensing Technologies and Applications

    Full text link
    The commercial availability of low-cost millimeter wave (mmWave) communication and radar devices is starting to improve the penetration of such technologies in consumer markets, paving the way for large-scale and dense deployments in fifth-generation (5G)-and-beyond as well as 6G networks. At the same time, pervasive mmWave access will enable device localization and device-free sensing with unprecedented accuracy, especially with respect to sub-6 GHz commercial-grade devices. This paper surveys the state of the art in device-based localization and device-free sensing using mmWave communication and radar devices, with a focus on indoor deployments. We first overview key concepts about mmWave signal propagation and system design. Then, we provide a detailed account of approaches and algorithms for localization and sensing enabled by mmWaves. We consider several dimensions in our analysis, including the main objectives, techniques, and performance of each work, whether each research reached some degree of implementation, and which hardware platforms were used for this purpose. We conclude by discussing that better algorithms for consumer-grade devices, data fusion methods for dense deployments, as well as an educated application of machine learning methods are promising, relevant and timely research directions.Comment: 43 pages, 13 figures. Accepted in IEEE Communications Surveys & Tutorials (IEEE COMST
    • 

    corecore