10,551 research outputs found

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Data Transmission with Reduced Delay for Distributed Acoustic Sensors

    Full text link
    This paper proposes a channel access control scheme fit to dense acoustic sensor nodes in a sensor network. In the considered scenario, multiple acoustic sensor nodes within communication range of a cluster head are grouped into clusters. Acoustic sensor nodes in a cluster detect acoustic signals and convert them into electric signals (packets). Detection by acoustic sensors can be executed periodically or randomly and random detection by acoustic sensors is event driven. As a result, each acoustic sensor generates their packets (50bytes each) periodically or randomly over short time intervals (400ms~4seconds) and transmits directly to a cluster head (coordinator node). Our approach proposes to use a slotted carrier sense multiple access. All acoustic sensor nodes in a cluster are allocated to time slots and the number of allocated sensor nodes to each time slot is uniform. All sensor nodes allocated to a time slot listen for packet transmission from the beginning of the time slot for a duration proportional to their priority. The first node that detect the channel to be free for its whole window is allowed to transmit. The order of packet transmissions with the acoustic sensor nodes in the time slot is autonomously adjusted according to the history of packet transmissions in the time slot. In simulations, performances of the proposed scheme are demonstrated by the comparisons with other low rate wireless channel access schemes.Comment: Accepted to IJDSN, final preprinted versio

    Self-Calibration Methods for Uncontrolled Environments in Sensor Networks: A Reference Survey

    Get PDF
    Growing progress in sensor technology has constantly expanded the number and range of low-cost, small, and portable sensors on the market, increasing the number and type of physical phenomena that can be measured with wirelessly connected sensors. Large-scale deployments of wireless sensor networks (WSN) involving hundreds or thousands of devices and limited budgets often constrain the choice of sensing hardware, which generally has reduced accuracy, precision, and reliability. Therefore, it is challenging to achieve good data quality and maintain error-free measurements during the whole system lifetime. Self-calibration or recalibration in ad hoc sensor networks to preserve data quality is essential, yet challenging, for several reasons, such as the existence of random noise and the absence of suitable general models. Calibration performed in the field, without accurate and controlled instrumentation, is said to be in an uncontrolled environment. This paper provides current and fundamental self-calibration approaches and models for wireless sensor networks in uncontrolled environments

    Collaborative signal and information processing for target detection with heterogeneous sensor networks

    Get PDF
    In this paper, an approach for target detection and acquisition with heterogeneous sensor networks through strategic resource allocation and coordination is presented. Based on sensor management and collaborative signal and information processing, low-capacity low-cost sensors are strategically deployed to guide and cue scarce high performance sensors in the network to improve the data quality, with which the mission is eventually completed more efficiently with lower cost. We focus on the problem of designing such a network system in which issues of resource selection and allocation, system behaviour and capacity, target behaviour and patterns, the environment, and multiple constraints such as the cost must be addressed simultaneously. Simulation results offer significant insight into sensor selection and network operation, and demonstrate the great benefits introduced by guided search in an application of hunting down and capturing hostile vehicles on the battlefield
    • …
    corecore