1,343 research outputs found

    Seamless and Secure VR: Adapting and Evaluating Established Authentication Systems for Virtual Reality

    Get PDF
    Virtual reality (VR) headsets are enabling a wide range of new opportunities for the user. For example, in the near future users may be able to visit virtual shopping malls and virtually join international conferences. These and many other scenarios pose new questions with regards to privacy and security, in particular authentication of users within the virtual environment. As a first step towards seamless VR authentication, this paper investigates the direct transfer of well-established concepts (PIN, Android unlock patterns) into VR. In a pilot study (N = 5) and a lab study (N = 25), we adapted existing mechanisms and evaluated their usability and security for VR. The results indicate that both PINs and patterns are well suited for authentication in VR. We found that the usability of both methods matched the performance known from the physical world. In addition, the private visual channel makes authentication harder to observe, indicating that authentication in VR using traditional concepts already achieves a good balance in the trade-off between usability and security. The paper contributes to a better understanding of authentication within VR environments, by providing the first investigation of established authentication methods within VR, and presents the base layer for the design of future authentication schemes, which are used in VR environments only

    Game authentication based on behavior pattern

    Get PDF

    Touchalytics: On the Applicability of Touchscreen Input as a Behavioral Biometric for Continuous Authentication

    Full text link
    We investigate whether a classifier can continuously authenticate users based on the way they interact with the touchscreen of a smart phone. We propose a set of 30 behavioral touch features that can be extracted from raw touchscreen logs and demonstrate that different users populate distinct subspaces of this feature space. In a systematic experiment designed to test how this behavioral pattern exhibits consistency over time, we collected touch data from users interacting with a smart phone using basic navigation maneuvers, i.e., up-down and left-right scrolling. We propose a classification framework that learns the touch behavior of a user during an enrollment phase and is able to accept or reject the current user by monitoring interaction with the touch screen. The classifier achieves a median equal error rate of 0% for intra-session authentication, 2%-3% for inter-session authentication and below 4% when the authentication test was carried out one week after the enrollment phase. While our experimental findings disqualify this method as a standalone authentication mechanism for long-term authentication, it could be implemented as a means to extend screen-lock time or as a part of a multi-modal biometric authentication system.Comment: to appear at IEEE Transactions on Information Forensics & Security; Download data from http://www.mariofrank.net/touchalytics

    A Shoulder Surfing Resistant Graphical Authentication System

    Get PDF
    Authentication based on passwords is used largely in applications for computer security and privacy. However, human actions such as choosing bad passwords and inputting passwords in an insecure way are regarded as ”the weakest link” in the authentication chain. Rather than arbitrary alphanumeric strings, users tend to choose passwords either short or meaningful for easy memorization. With web applications and mobile apps piling up, people can access these applications anytime and anywhere with various devices. This evolution brings great convenience but also increases the probability of exposing passwords to shoulder surfing attacks. Attackers can observe directly or use external recording devices to collect users’ credentials. To overcome this problem, we proposed a novel authentication system PassMatrix, based on graphical passwords to resist shoulder surfing attacks. With a one-time valid login indicator and circulative horizontal and vertical bars covering the entire scope of pass-images, PassMatrix offers no hint for attackers to figure out or narrow down the password even they conduct multiple camera-based attacks. We also implemented a PassMatrix prototype on Android and carried out real user experiments to evaluate its memorability and usability. From the experimental result, the proposed system achieves better resistance to shoulder surfing attacks while maintaining usability

    Towards Baselines for Shoulder Surfing on Mobile Authentication

    Full text link
    Given the nature of mobile devices and unlock procedures, unlock authentication is a prime target for credential leaking via shoulder surfing, a form of an observation attack. While the research community has investigated solutions to minimize or prevent the threat of shoulder surfing, our understanding of how the attack performs on current systems is less well studied. In this paper, we describe a large online experiment (n=1173) that works towards establishing a baseline of shoulder surfing vulnerability for current unlock authentication systems. Using controlled video recordings of a victim entering in a set of 4- and 6-length PINs and Android unlock patterns on different phones from different angles, we asked participants to act as attackers, trying to determine the authentication input based on the observation. We find that 6-digit PINs are the most elusive attacking surface where a single observation leads to just 10.8% successful attacks, improving to 26.5\% with multiple observations. As a comparison, 6-length Android patterns, with one observation, suffered 64.2% attack rate and 79.9% with multiple observations. Removing feedback lines for patterns improves security from 35.3\% and 52.1\% for single and multiple observations, respectively. This evidence, as well as other results related to hand position, phone size, and observation angle, suggests the best and worst case scenarios related to shoulder surfing vulnerability which can both help inform users to improve their security choices, as well as establish baselines for researchers.Comment: Will appear in Annual Computer Security Applications Conference (ACSAC

    A Survey on Lock Screen for User Authentication Method in Android

    Get PDF
    1973 Motorola makes the first handheld mobile device. A gap was given until current smart phones started coming up in the 90s. Since then, it has been an avalanche of smart phones, with every manufacturer trying to fight for the greater market share. With Android at the helm of all the buzz, nobody gives a thought to the fact that these would resume of one?s identity. Take away somebody?s smartphone, and you have taken away a greater part of his life. This brings us to the whole security aspect of it. The measures which Smartphone manufacturers have taken to ensure their safety probably in the wrong hands still leaves a lot of questions and calls for analysis

    Using Hover to Compromise the Confidentiality of User Input on Android

    Full text link
    We show that the new hover (floating touch) technology, available in a number of today's smartphone models, can be abused by any Android application running with a common SYSTEM_ALERT_WINDOW permission to record all touchscreen input into other applications. Leveraging this attack, a malicious application running on the system is therefore able to profile user's behavior, capture sensitive input such as passwords and PINs as well as record all user's social interactions. To evaluate our attack we implemented Hoover, a proof-of-concept malicious application that runs in the system background and records all input to foreground applications. We evaluated Hoover with 40 users, across two different Android devices and two input methods, stylus and finger. In the case of touchscreen input by finger, Hoover estimated the positions of users' clicks within an error of 100 pixels and keyboard input with an accuracy of 79%. Hoover captured users' input by stylus even more accurately, estimating users' clicks within 2 pixels and keyboard input with an accuracy of 98%. We discuss ways of mitigating this attack and show that this cannot be done by simply restricting access to permissions or imposing additional cognitive load on the users since this would significantly constrain the intended use of the hover technology.Comment: 11 page

    Enhancing Usability and Security through Alternative Authentication Methods

    Get PDF
    With the expanding popularity of various Internet services, online users have be- come more vulnerable to malicious attacks as more of their private information is accessible on the Internet. The primary defense protecting private information is user authentication, which currently relies on less than ideal methods such as text passwords and PIN numbers. Alternative methods such as graphical passwords and behavioral biometrics have been proposed, but with too many limitations to replace current methods. However, with enhancements to overcome these limitations and harden existing methods, alternative authentications may become viable for future use. This dissertation aims to enhance the viability of alternative authentication systems. In particular, our research focuses on graphical passwords, biometrics that depend, directly or indirectly, on anthropometric data, and user authentication en- hancements using touch screen features on mobile devices. In the study of graphical passwords, we develop a new cued-recall graphical pass- word system called GridMap by exploring (1) the use of grids with variable input entered through the keyboard, and (2) the use of maps as background images. as a result, GridMap is able to achieve high key space and resistance to shoulder surfing attacks. to validate the efficacy of GridMap in practice, we conduct a user study with 50 participants. Our experimental results show that GridMap works well in domains in which a user logs in on a regular basis, and provides a memorability benefit if the chosen map has a personal significance to the user. In the study of anthropometric based biometrics through the use of mouse dy- namics, we present a method for choosing metrics based on empirical evidence of natural difference in the genders. In particular, we develop a novel gender classifi- cation model and evaluate the model’s accuracy based on the data collected from a group of 94 users. Temporal, spatial, and accuracy metrics are recorded from kine- matic and spatial analyses of 256 mouse movements performed by each user. The effectiveness of our model is validated through the use of binary logistic regressions. Finally, we propose enhanced authentication schemes through redesigned input, along with the use of anthropometric biometrics on mobile devices. We design a novel scheme called Triple Touch PIN (TTP) that improves traditional PIN number based authentication with highly enlarged keyspace. We evaluate TTP on a group of 25 participants. Our evaluation results show that TTP is robust against dictio- nary attacks and achieves usability at acceptable levels for users. We also assess anthropometric based biometrics by attempting to differentiate user fingers through the readings of the sensors in the touch screen. We validate the viability of this biometric approach on 33 users, and observe that it is feasible for distinguishing the fingers with the largest anthropometric differences, the thumb and pinkie fingers
    • …
    corecore