11,679 research outputs found

    The Swap Matching Problem Revisited

    Full text link
    In this paper, we revisit the much studied problem of Pattern Matching with Swaps (Swap Matching problem, for short). We first present a graph-theoretic model, which opens a new and so far unexplored avenue to solve the problem. Then, using the model, we devise two efficient algorithms to solve the swap matching problem. The resulting algorithms are adaptations of the classic shift-and algorithm. For patterns having length similar to the word-size of the target machine, both the algorithms run in linear time considering a fixed alphabet.Comment: 23 pages, 3 Figures and 17 Table

    Fine-Grained Complexity of k-OPT in Bounded-Degree Graphs for Solving TSP

    Get PDF
    The Traveling Salesman Problem asks to find a minimum-weight Hamiltonian cycle in an edge-weighted complete graph. Local search is a widely-employed strategy for finding good solutions to TSP. A popular neighborhood operator for local search is k-opt, which turns a Hamiltonian cycle C into a new Hamiltonian cycle C\u27 by replacing k edges. We analyze the problem of determining whether the weight of a given cycle can be decreased by a k-opt move. Earlier work has shown that (i) assuming the Exponential Time Hypothesis, there is no algorithm that can detect whether or not a given Hamiltonian cycle C in an n-vertex input can be improved by a k-opt move in time f(k) n^o(k / log k) for any function f, while (ii) it is possible to improve on the brute-force running time of O(n^k) and save linear factors in the exponent. Modern TSP heuristics are very successful at identifying the most promising edges to be used in k-opt moves, and experiments show that very good global solutions can already be reached using only the top-O(1) most promising edges incident to each vertex. This leads to the following question: can improving k-opt moves be found efficiently in graphs of bounded degree? We answer this question in various regimes, presenting new algorithms and conditional lower bounds. We show that the aforementioned ETH lower bound also holds for graphs of maximum degree three, but that in bounded-degree graphs the best improving k-move can be found in time O(n^((23/135+epsilon_k)k)), where lim_{k -> infty} epsilon_k = 0. This improves upon the best-known bounds for general graphs. Due to its practical importance, we devote special attention to the range of k in which improving k-moves in bounded-degree graphs can be found in quasi-linear time. For k <= 7, we give quasi-linear time algorithms for general weights. For k=8 we obtain a quasi-linear time algorithm when the weights are bounded by O(polylog n). On the other hand, based on established fine-grained complexity hypotheses about the impossibility of detecting a triangle in edge-linear time, we prove that the k = 9 case does not admit quasi-linear time algorithms. Hence we fully characterize the values of k for which quasi-linear time algorithms exist for polylogarithmic weights on bounded-degree graphs

    Complexity of Token Swapping and its Variants

    Full text link
    In the Token Swapping problem we are given a graph with a token placed on each vertex. Each token has exactly one destination vertex, and we try to move all the tokens to their destinations, using the minimum number of swaps, i.e., operations of exchanging the tokens on two adjacent vertices. As the main result of this paper, we show that Token Swapping is W[1]W[1]-hard parameterized by the length kk of a shortest sequence of swaps. In fact, we prove that, for any computable function ff, it cannot be solved in time f(k)no(k/logk)f(k)n^{o(k / \log k)} where nn is the number of vertices of the input graph, unless the ETH fails. This lower bound almost matches the trivial nO(k)n^{O(k)}-time algorithm. We also consider two generalizations of the Token Swapping, namely Colored Token Swapping (where the tokens have different colors and tokens of the same color are indistinguishable), and Subset Token Swapping (where each token has a set of possible destinations). To complement the hardness result, we prove that even the most general variant, Subset Token Swapping, is FPT in nowhere-dense graph classes. Finally, we consider the complexities of all three problems in very restricted classes of graphs: graphs of bounded treewidth and diameter, stars, cliques, and paths, trying to identify the borderlines between polynomial and NP-hard cases.Comment: 23 pages, 7 Figure

    TAPER: query-aware, partition-enhancement for large, heterogenous, graphs

    Full text link
    Graph partitioning has long been seen as a viable approach to address Graph DBMS scalability. A partitioning, however, may introduce extra query processing latency unless it is sensitive to a specific query workload, and optimised to minimise inter-partition traversals for that workload. Additionally, it should also be possible to incrementally adjust the partitioning in reaction to changes in the graph topology, the query workload, or both. Because of their complexity, current partitioning algorithms fall short of one or both of these requirements, as they are designed for offline use and as one-off operations. The TAPER system aims to address both requirements, whilst leveraging existing partitioning algorithms. TAPER takes any given initial partitioning as a starting point, and iteratively adjusts it by swapping chosen vertices across partitions, heuristically reducing the probability of inter-partition traversals for a given pattern matching queries workload. Iterations are inexpensive thanks to time and space optimisations in the underlying support data structures. We evaluate TAPER on two different large test graphs and over realistic query workloads. Our results indicate that, given a hash-based partitioning, TAPER reduces the number of inter-partition traversals by around 80%; given an unweighted METIS partitioning, by around 30%. These reductions are achieved within 8 iterations and with the additional advantage of being workload-aware and usable online.Comment: 12 pages, 11 figures, unpublishe

    A bijection between the set of nesting-similarity classes and L & P matchings

    Full text link
    Matchings are frequently used to model RNA secondary structures; however, not all matchings can be realized as RNA motifs. One class of matchings, called the L &\& P matchings, is the most restrictive model for RNA secondary structures in the Largest Hairpin Family (LHF). The L &\& P matchings were enumerated in 20152015 by Jefferson, and they are equinumerous with the set of nesting-similarity classes of matchings, enumerated by Klazar. We provide a bijection between these two sets. This bijection preserves noncrossing matchings, and preserves the sequence obtained reading left to right of whether an edge begins or ends at that vertex.Comment: 9 pages, 7 figure

    Hedging and invoicing strategies to reduce exchange rate exposure - a euro-area perspective

    Get PDF
    Domestic-currency invoicing and hedging allow internationally active firms to reduce their exposure to exchange rate variations. This paper argues that domestic-currency invoicing and hedging with exchange rate derivatives allow a fairly straightforward management of transaction and translation risk. Broader economic risk (which takes into account the impact of the exchange rate on competitiveness) is by its very nature harder to manage, but the paper argues that natural hedging provides possibilities for doing so. A novelty of this paper is a survey of actual hedging strategies and techniques of large euro-area corporations. The paper finds that euro-area exporters make ample use of instruments to limit the adverse impact of euro appreciation.Exchange rate risk, invoicing, hedging, derivatives, Hedging and invoicing strategies to reduce exchange rate exposure - a euro-area perspective, Economic Paper, D�hring
    corecore