2,389 research outputs found

    Elastic-Degenerate String Matching with 1 Error

    Get PDF
    An elastic-degenerate string is a sequence of nn finite sets of strings of total length NN, introduced to represent a set of related DNA sequences, also known as a pangenome. The ED string matching (EDSM) problem consists in reporting all occurrences of a pattern of length mm in an ED text. This problem has recently received some attention by the combinatorial pattern matching community, culminating in an O~(nmω−1)+O(N)\tilde{\mathcal{O}}(nm^{\omega-1})+\mathcal{O}(N)-time algorithm [Bernardini et al., SIAM J. Comput. 2022], where ω\omega denotes the matrix multiplication exponent and the O~(⋅)\tilde{\mathcal{O}}(\cdot) notation suppresses polylog factors. In the kk-EDSM problem, the approximate version of EDSM, we are asked to report all pattern occurrences with at most kk errors. kk-EDSM can be solved in O(k2mG+kN)\mathcal{O}(k^2mG+kN) time, under edit distance, or O(kmG+kN)\mathcal{O}(kmG+kN) time, under Hamming distance, where GG denotes the total number of strings in the ED text [Bernardini et al., Theor. Comput. Sci. 2020]. Unfortunately, GG is only bounded by NN, and so even for k=1k=1, the existing algorithms run in Ω(mN)\Omega(mN) time in the worst case. In this paper we show that 11-EDSM can be solved in O((nm2+N)log⁥m)\mathcal{O}((nm^2 + N)\log m) or O(nm3+N)\mathcal{O}(nm^3 + N) time under edit distance. For the decision version, we present a faster O(nm2log⁥m+Nlog⁥log⁥m)\mathcal{O}(nm^2\sqrt{\log m} + N\log\log m)-time algorithm. We also show that 11-EDSM can be solved in O(nm2+Nlog⁥m)\mathcal{O}(nm^2 + N\log m) time under Hamming distance. Our algorithms for edit distance rely on non-trivial reductions from 11-EDSM to special instances of classic computational geometry problems (2d rectangle stabbing or 2d range emptiness), which we show how to solve efficiently. In order to obtain an even faster algorithm for Hamming distance, we rely on employing and adapting the kk-errata trees for indexing with errors [Cole et al., STOC 2004].Comment: This is an extended version of a paper accepted at LATIN 202

    Faster Online Elastic Degenerate String Matching

    Get PDF
    An Elastic-Degenerate String [Iliopoulus et al., LATA 2017] is a sequence of sets of strings, which was recently proposed as a way to model a set of similar sequences. We give an online algorithm for the Elastic-Degenerate String Matching (EDSM) problem that runs in O(nm sqrt{m log m} + N) time and O(m) working space, where n is the number of elastic degenerate segments of the text, N is the total length of all strings in the text, and m is the length of the pattern. This improves the previous algorithm by Grossi et al. [CPM 2017] that runs in O(nm^2 + N) time

    Even faster elastic-degenerate string matching via fast matrix multiplication

    Get PDF
    An elastic-degenerate (ED) string is a sequence of n sets of strings of total length N, which was recently proposed to model a set of similar sequences. The ED string matching (EDSM) problem is to find all occurrences of a pattern of length m in an ED text. The EDSM problem has recently received some attention in the combinatorial pattern matching community, and an O(nm1.5 √(log m) + N)-time algorithm is known [Aoyama et al., CPM 2018]. The standard assumption in the prior work on this question is that N is substantially larger than both n and m, and thus we would like to have a linear dependency on the former. Under this assumption, the natural open problem is whether we can decrease the 1.5 exponent in the time complexity, similarly as in the related (but, to the best of our knowledge, not equivalent) word break problem [Backurs and Indyk, FOCS 2016].Our starting point is a conditional lower bound for the EDSM problem. We use the popular combinatorial Boolean matrix multiplication (BMM) conjecture stating that there is no truly subcubic combinatorial algorithm for BMM [Abboud and Williams, FOCS 2014]. By designing an appropriate reduction we show that a combinatorial algorithm solving the EDSM problem in O(nm1.5−∊ + N) time, for any ∊ > 0, refutes this conjecture. Of course, the notion of combinatorial algorithms is not clearly defined, so our reduction should be understood as an indication that decreasing the exponent requires fast matrix multiplication.Two standard tools used in algorithms on strings are string periodicity and fast Fourier transform. Our main technical contribution is that we successfully combine these tools with fast matrix multiplication to design a non-combinatorial O(nm1.381 + N)-time algorithm for EDSM. To the best of our knowledge, we are the first to do so.</p

    Cooling in strongly correlated optical lattices: prospects and challenges

    Full text link
    Optical lattices have emerged as ideal simulators for Hubbard models of strongly correlated materials, such as the high-temperature superconducting cuprates. In optical lattice experiments, microscopic parameters such as the interaction strength between particles are well known and easily tunable. Unfortunately, this benefit of using optical lattices to study Hubbard models come with one clear disadvantage: the energy scales in atomic systems are typically nanoKelvin compared with Kelvin in solids, with a correspondingly miniscule temperature scale required to observe exotic phases such as d-wave superconductivity. The ultra-low temperatures necessary to reach the regime in which optical lattice simulation can have an impact-the domain in which our theoretical understanding fails-have been a barrier to progress in this field. To move forward, a concerted effort to develop new techniques for cooling and, by extension, techniques to measure even lower temperatures. This article will be devoted to discussing the concepts of cooling and thermometry, fundamental sources of heat in optical lattice experiments, and a review of proposed and implemented thermometry and cooling techniques.Comment: in review with Reports on Progress in Physic
    • 

    corecore