138,652 research outputs found

    Pattern Matching for sets of segments

    Full text link
    In this paper we present algorithms for a number of problems in geometric pattern matching where the input consist of a collections of segments in the plane. Our work consists of two main parts. In the first, we address problems and measures that relate to collections of orthogonal line segments in the plane. Such collections arise naturally from problems in mapping buildings and robot exploration. We propose a new measure of segment similarity called a \emph{coverage measure}, and present efficient algorithms for maximising this measure between sets of axis-parallel segments under translations. Our algorithms run in time O(n^3\polylog n) in the general case, and run in time O(n^2\polylog n) for the case when all segments are horizontal. In addition, we show that when restricted to translations that are only vertical, the Hausdorff distance between two sets of horizontal segments can be computed in time roughly O(n^{3/2}{\sl polylog}n). These algorithms form significant improvements over the general algorithm of Chew et al. that takes time O(n4log2n)O(n^4 \log^2 n). In the second part of this paper we address the problem of matching polygonal chains. We study the well known \Frd, and present the first algorithm for computing the \Frd under general translations. Our methods also yield algorithms for computing a generalization of the \Fr distance, and we also present a simple approximation algorithm for the \Frd that runs in time O(n^2\polylog n).Comment: To appear in the 12 ACM Symposium on Discrete Algorithms, Jan 200

    Faster Online Elastic Degenerate String Matching

    Get PDF
    An Elastic-Degenerate String [Iliopoulus et al., LATA 2017] is a sequence of sets of strings, which was recently proposed as a way to model a set of similar sequences. We give an online algorithm for the Elastic-Degenerate String Matching (EDSM) problem that runs in O(nm sqrt{m log m} + N) time and O(m) working space, where n is the number of elastic degenerate segments of the text, N is the total length of all strings in the text, and m is the length of the pattern. This improves the previous algorithm by Grossi et al. [CPM 2017] that runs in O(nm^2 + N) time

    Geometric Optimization Problem Solving: Matching Sets of Line Segments and Multi-robot Path Planning

    Get PDF
    Department of Computer Science and EngineeringWe study two geometric optimization problems: Line segments pattern matching and multi-robot path planning. We give approximation algorithms for matching two sets of line segments in constant dimension. We consider several versions of the problem: Hausdorff distance, bottleneck distance and largest common subset. We study these similarity measures under several sets of transformations: translations in arbitrary dimension, rotations about a fixed point and rigid motions in two dimensions. As opposed to previous theoretical work on this problem, we match segments individually, in other words we regard our two input sets as sets of segments rather than unions of segments. Then we consider a multi-robot path planning problem. A collection of square robots need to move on the integer grid, from their given starting points to their target points, and without collision between robots, or between robots and a set of input obstacles. We designed and implemented three algorithms for this problem. First, we computed a feasible solution by placing middle-points outside of the minimum bounding box of the starting positions, the target positions and the obstacles, and moving each robot from its starting point to its target point through a middle-point. Second, we applied a simple local search approach where we repeatedly delete and insert again a random robot through an optimal path. It improves the quality of the solution, as the robots no longer need to go through the middle-points. Finally, we used simulated annealing to further improve this feasible solution.ope

    Quasi-Parallel Segments and Characterization of Unique Bichromatic Matchings

    Full text link
    Given n red and n blue points in general position in the plane, it is well-known that there is a perfect matching formed by non-crossing line segments. We characterize the bichromatic point sets which admit exactly one non-crossing matching. We give several geometric descriptions of such sets, and find an O(nlogn) algorithm that checks whether a given bichromatic set has this property.Comment: 31 pages, 24 figure

    Analyzing large-scale DNA Sequences on Multi-core Architectures

    Full text link
    Rapid analysis of DNA sequences is important in preventing the evolution of different viruses and bacteria during an early phase, early diagnosis of genetic predispositions to certain diseases (cancer, cardiovascular diseases), and in DNA forensics. However, real-world DNA sequences may comprise several Gigabytes and the process of DNA analysis demands adequate computational resources to be completed within a reasonable time. In this paper we present a scalable approach for parallel DNA analysis that is based on Finite Automata, and which is suitable for analyzing very large DNA segments. We evaluate our approach for real-world DNA segments of mouse (2.7GB), cat (2.4GB), dog (2.4GB), chicken (1GB), human (3.2GB) and turkey (0.2GB). Experimental results on a dual-socket shared-memory system with 24 physical cores show speed-ups of up to 17.6x. Our approach is up to 3x faster than a pattern-based parallel approach that uses the RE2 library.Comment: The 18th IEEE International Conference on Computational Science and Engineering (CSE 2015), Porto, Portugal, 20 - 23 October 201

    Learnable PINs: Cross-Modal Embeddings for Person Identity

    Full text link
    We propose and investigate an identity sensitive joint embedding of face and voice. Such an embedding enables cross-modal retrieval from voice to face and from face to voice. We make the following four contributions: first, we show that the embedding can be learnt from videos of talking faces, without requiring any identity labels, using a form of cross-modal self-supervision; second, we develop a curriculum learning schedule for hard negative mining targeted to this task, that is essential for learning to proceed successfully; third, we demonstrate and evaluate cross-modal retrieval for identities unseen and unheard during training over a number of scenarios and establish a benchmark for this novel task; finally, we show an application of using the joint embedding for automatically retrieving and labelling characters in TV dramas.Comment: To appear in ECCV 201
    corecore