487 research outputs found

    EAGLE—A Scalable Query Processing Engine for Linked Sensor Data

    Get PDF
    Recently, many approaches have been proposed to manage sensor data using semantic web technologies for effective heterogeneous data integration. However, our empirical observations revealed that these solutions primarily focused on semantic relationships and unfortunately paid less attention to spatio–temporal correlations. Most semantic approaches do not have spatio–temporal support. Some of them have attempted to provide full spatio–temporal support, but have poor performance for complex spatio–temporal aggregate queries. In addition, while the volume of sensor data is rapidly growing, the challenge of querying and managing the massive volumes of data generated by sensing devices still remains unsolved. In this article, we introduce EAGLE, a spatio–temporal query engine for querying sensor data based on the linked data model. The ultimate goal of EAGLE is to provide an elastic and scalable system which allows fast searching and analysis with respect to the relationships of space, time and semantics in sensor data. We also extend SPARQL with a set of new query operators in order to support spatio–temporal computing in the linked sensor data context.EC/H2020/732679/EU/ACTivating InnoVative IoT smart living environments for AGEing well/ACTIVAGEEC/H2020/661180/EU/A Scalable and Elastic Platform for Near-Realtime Analytics for The Graph of Everything/SMARTE

    Estimating Fire Weather Indices via Semantic Reasoning over Wireless Sensor Network Data Streams

    Full text link
    Wildfires are frequent, devastating events in Australia that regularly cause significant loss of life and widespread property damage. Fire weather indices are a widely-adopted method for measuring fire danger and they play a significant role in issuing bushfire warnings and in anticipating demand for bushfire management resources. Existing systems that calculate fire weather indices are limited due to low spatial and temporal resolution. Localized wireless sensor networks, on the other hand, gather continuous sensor data measuring variables such as air temperature, relative humidity, rainfall and wind speed at high resolutions. However, using wireless sensor networks to estimate fire weather indices is a challenge due to data quality issues, lack of standard data formats and lack of agreement on thresholds and methods for calculating fire weather indices. Within the scope of this paper, we propose a standardized approach to calculating Fire Weather Indices (a.k.a. fire danger ratings) and overcome a number of the challenges by applying Semantic Web Technologies to the processing of data streams from a wireless sensor network deployed in the Springbrook region of South East Queensland. This paper describes the underlying ontologies, the semantic reasoning and the Semantic Fire Weather Index (SFWI) system that we have developed to enable domain experts to specify and adapt rules for calculating Fire Weather Indices. We also describe the Web-based mapping interface that we have developed, that enables users to improve their understanding of how fire weather indices vary over time within a particular region.Finally, we discuss our evaluation results that indicate that the proposed system outperforms state-of-the-art techniques in terms of accuracy, precision and query performance.Comment: 20pages, 12 figure

    Temporal Representation in Semantic Graphs

    Full text link

    An Ontology-Based Assistant For Analyzing Agents\u27 Activities

    Get PDF
    This thesis reports on work in progress on software that helps an analyst identify and analyze activities of actors (such as vehicles) in an intelligence-relevant scenario. A system is being developed to aid intelligence analysts, IAGOA ((Intelligence Analyst’s Geospatial and Ontological Assistant). Analysis may be accomplished by retrieving simulated satellite data of ground vehicles and interacting with software modules that allow the analyst to conjecture the activities in which the actor is engaged along with the (largely geospatial and temporal) features of the area of operation relevant to the natures of those activities. Activities are conceptualized by ontologies. The research relies on natural language components (semantic frames) gathered from the FrameNet lexical database, which captures the semantics of lexical items with an ontology using OWL. The software has two components, one for the analyst, and one for a modeler who produces HTML and parameterized KML documents used by the analyst. The most significant input to the modeler software is the FrameNet OWL file, and the interface for the analyst and, to some extent, the modeler is provided by the Google Earth API

    Storing and querying evolving knowledge graphs on the web

    Get PDF
    • …
    corecore