3,376 research outputs found

    Patterning the insect eye: from stochastic to deterministic mechanisms

    Get PDF
    While most processes in biology are highly deterministic, stochastic mechanisms are sometimes used to increase cellular diversity, such as in the specification of sensory receptors. In the human and Drosophila eye, photoreceptors sensitive to various wavelengths of light are distributed randomly across the retina. Mechanisms that underlie stochastic cell fate specification have been analysed in detail in the Drosophila retina. In contrast, the retinas of another group of dipteran flies exhibit highly ordered patterns. Species in the Dolichopodidae, the "long-legged" flies, have regular alternating columns of two types of ommatidia (unit eyes), each producing corneal lenses of different colours. Individual flies sometimes exhibit perturbations of this orderly pattern, with "mistakes" producing changes in pattern that can propagate across the entire eye, suggesting that the underlying developmental mechanisms follow local, cellular-automaton-like rules. We hypothesize that the regulatory circuitry patterning the eye is largely conserved among flies such that the difference between the Drosophila and Dolichopodidae eyes should be explicable in terms of relative interaction strengths, rather than requiring a rewiring of the regulatory network. We present a simple stochastic model which, among its other predictions, is capable of explaining both the random Drosophila eye and the ordered, striped pattern of Dolichopodidae.Comment: 24 pages, 4 figure

    Conservation of pattern as a tool for inference on spatial snapshots in ecological data

    Get PDF
    As climate change and other anthropogenic factors increase the uncertainty of vegetation ecosystem persistence, the ability to rapidly assess their dynamics is paramount. Vegetation and sessile communities form a variety of striking regular spatial patterns such as stripes, spots and labyrinths, that have been used as indicators of ecosystem current state, through qualitative analysis of simple models. Here we describe a new method for rigorous quantitative estimation of biological parameters from a single spatial snapshot. We formulate a synthetic likelihood through consideration of the expected change in the correlation structure of the spatial pattern. This then allows Bayesian inference to be performed on the model parameters, which includes providing parameter uncertainty. The method was validated against simulated data and then applied to real data in the form of aerial photographs of seagrass banding. The inferred parameters were found to be able to reproduce similar patterns to those observed and able to detect strength of spatial competition, competition-induced mortality and the local range of reproduction. This technique points to a way of performing rapid inference of spatial competition and ecological stability from a single spatial snapshots of sessile communities

    Data-driven Flood Emulation: Speeding up Urban Flood Predictions by Deep Convolutional Neural Networks

    Full text link
    Computational complexity has been the bottleneck of applying physically-based simulations on large urban areas with high spatial resolution for efficient and systematic flooding analyses and risk assessments. To address this issue of long computational time, this paper proposes that the prediction of maximum water depth rasters can be considered as an image-to-image translation problem where the results are generated from input elevation rasters using the information learned from data rather than by conducting simulations, which can significantly accelerate the prediction process. The proposed approach was implemented by a deep convolutional neural network trained on flood simulation data of 18 designed hyetographs on three selected catchments. Multiple tests with both designed and real rainfall events were performed and the results show that the flood predictions by neural network uses only 0.5 % of time comparing with physically-based approaches, with promising accuracy and ability of generalizations. The proposed neural network can also potentially be applied to different but relevant problems including flood predictions for urban layout planning

    An Algorithm for Pattern Discovery in Time Series

    Get PDF
    We present a new algorithm for discovering patterns in time series and other sequential data. We exhibit a reliable procedure for building the minimal set of hidden, Markovian states that is statistically capable of producing the behavior exhibited in the data -- the underlying process's causal states. Unlike conventional methods for fitting hidden Markov models (HMMs) to data, our algorithm makes no assumptions about the process's causal architecture (the number of hidden states and their transition structure), but rather infers it from the data. It starts with assumptions of minimal structure and introduces complexity only when the data demand it. Moreover, the causal states it infers have important predictive optimality properties that conventional HMM states lack. We introduce the algorithm, review the theory behind it, prove its asymptotic reliability, use large deviation theory to estimate its rate of convergence, and compare it to other algorithms which also construct HMMs from data. We also illustrate its behavior on an example process, and report selected numerical results from an implementation.Comment: 26 pages, 5 figures; 5 tables; http://www.santafe.edu/projects/CompMech Added discussion of algorithm parameters; improved treatment of convergence and time complexity; added comparison to older method

    A Spatial Agent-Based Model of N-Person Prisoner's Dilemma Cooperation in a Socio-Geographic Community

    Get PDF
    The purpose of this paper is to present a spatial agent-based model of N-person prisoner's dilemma that is designed to simulate the collective communication and cooperation within a socio-geographic community. Based on a tight coupling of REPAST and a vector Geographic Information System, the model simulates the emergence of cooperation from the mobility behaviors and interaction strategies of citizen agents. To approximate human behavior, the agents are set as stochastic learning automata with Pavlovian personalities and attitudes. A review of the theory of the standard prisoner's dilemma, the iterated prisoner's dilemma, and the N-person prisoner's dilemma is given as well as an overview of the generic architecture of the agent-based model. The capabilities of the spatial N-person prisoner's dilemma component are demonstrated with several scenario simulation runs for varied initial cooperation percentages and mobility dynamics. Experimental results revealed that agent mobility and context preservation bring qualitatively different effects to the evolution of cooperative behavior in an analyzed spatial environment.Agent Based Modeling, Cooperation, Prisoners Dilemma, Spatial Interaction Model, Spatially Structured Social Dilemma, Geographic Information Systems
    corecore