306 research outputs found

    Mathematical models for chemotaxis and their applications in self-organisation phenomena

    Get PDF
    Chemotaxis is a fundamental guidance mechanism of cells and organisms, responsible for attracting microbes to food, embryonic cells into developing tissues, immune cells to infection sites, animals towards potential mates, and mathematicians into biology. The Patlak-Keller-Segel (PKS) system forms part of the bedrock of mathematical biology, a go-to-choice for modellers and analysts alike. For the former it is simple yet recapitulates numerous phenomena; the latter are attracted to these rich dynamics. Here I review the adoption of PKS systems when explaining self-organisation processes. I consider their foundation, returning to the initial efforts of Patlak and Keller and Segel, and briefly describe their patterning properties. Applications of PKS systems are considered in their diverse areas, including microbiology, development, immunology, cancer, ecology and crime. In each case a historical perspective is provided on the evidence for chemotactic behaviour, followed by a review of modelling efforts; a compendium of the models is included as an Appendix. Finally, a half-serious/half-tongue-in-cheek model is developed to explain how cliques form in academia. Assumptions in which scholars alter their research line according to available problems leads to clustering of academics and the formation of "hot" research topics.Comment: 35 pages, 8 figures, Submitted to Journal of Theoretical Biolog

    Boundedness and homogeneous asymptotics for a fractional logistic Keller-Segel equations

    Full text link
    In this paper we consider a dd-dimensional (d=1,2d=1,2) parabolic-elliptic Keller-Segel equation with a logistic forcing and a fractional diffusion of order α∈(0,2)\alpha \in (0,2). We prove uniform in time boundedness of its solution in the supercritical range α>d(1−c)\alpha>d\left(1-c\right), where cc is an explicit constant depending on parameters of our problem. Furthermore, we establish sufficient conditions for ∥u(t)−u∞∥L∞→0\|u(t)-u_\infty\|_{L^\infty}\rightarrow0, where u∞≡1u_\infty\equiv 1 is the only nontrivial homogeneous solution. Finally, we provide a uniqueness result
    • …
    corecore