95,746 research outputs found

    Turing pattern formation in the Brusselator system with nonlinear diffusion

    Full text link
    In this work we investigate the effect of density dependent nonlinear diffusion on pattern formation in the Brusselator system. Through linear stability analysis of the basic solution we determine the Turing and the oscillatory instability boundaries. A comparison with the classical linear diffusion shows how nonlinear diffusion favors the occurrence of Turing pattern formation. We study the process of pattern formation both in 1D and 2D spatial domains. Through a weakly nonlinear multiple scales analysis we derive the equations for the amplitude of the stationary patterns. The analysis of the amplitude equations shows the occurrence of a number of different phenomena, including stable supercritical and subcritical Turing patterns with multiple branches of stable solutions leading to hysteresis. Moreover we consider traveling patterning waves: when the domain size is large, the pattern forms sequentially and traveling wavefronts are the precursors to patterning. We derive the Ginzburg-Landau equation and describe the traveling front enveloping a pattern which invades the domain. We show the emergence of radially symmetric target patterns, and through a matching procedure we construct the outer amplitude equation and the inner core solution.Comment: Physical Review E, 201

    Turing Instability in a Boundary-fed System

    Get PDF
    The formation of localized structures in the chlorine dioxide-idodine-malonic acid (CDIMA) reaction-diffusion system is investigated numerically using a realistic model of this system. We analyze the one-dimensional patterns formed along the gradients imposed by boundary feeds, and study their linear stability to symmetry-breaking perturbations (Turing instability) in the plane transverse to these gradients. We establish that an often-invoked simple local linear analysis which neglects longitudinal diffusion is inappropriate for predicting the linear stability of these patterns. Using a fully nonuniform analysis, we investigate the structure of the patterns formed along the gradients and their stability to transverse Turing pattern formation as a function of the values of two control parameters: the malonic acid feed concentration and the size of the reactor in the dimension along the gradients. The results from this investigation are compared with existing experiments.Comment: 41 pages, 18 figures, to be published in Physical Review

    Using mathematical models to help understand biological pattern formation

    Get PDF
    One of the characteristics of biological systems is their ability to produce and sustain spatial and spatio-temporal pattern. Elucidating the underlying mechanisms responsible for this phenomenon has been the goal of much experimental and theoretical research. This paper illustrates this area of research by presenting some of the mathematical models that have been proposed to account for pattern formation in biology and considering their implications.To cite this article: P.K. Maini, C. R. Biologies 327 (2004)

    Boundary-Induced Pattern Formation from Temporal Oscillation: Spatial Map Analysis

    Full text link
    Boundary-induced pattern formation from a spatially uniform state is investigated using one-dimensional reaction-diffusion equations. The temporal oscillation is successively transformed into a spatially periodic pattern, triggered by diffusion from the fixed boundary. We introduced a spatial map, whose temporal sequence, under selection criteria from multiple stationary solutions, can completely reproduce the emergent pattern, by replacing the time with space. The relationship of the pattern wavelength with the period of oscillation is also obtained. The generality of the pattern selection process and algorithm is discussed with possible relevance to biological morphogenesis.Comment: 17page
    • …
    corecore