429,969 research outputs found

    Value Compression of Pattern Databases

    Get PDF
    One common pattern database compression technique is to merge adjacent database entries and store the minimum of merged entries to maintain heuristic admissibility. In this paper we propose a compression technique that preserves every entry, but reduces the number of bits used to store each entry, therefore limiting the values that can be represented. Even when this technique throws away low values in the heuristic, it can still have better performance than the traditional approach. We develop a theoretical basis for selecting which values to keep and show improved performance in both unidirectional and bidirectional search

    Abstract-Driven Pattern Discovery In Databases

    Get PDF
    In this paper, we study the problem of discovering interesting patterns in large volumes of data. Patterns can be expressed not only in terms of the database schema but also in user-defined terms, such as relational views and classification hierarchies. The user-defined terminology is stored in a data dictionary that maps it into the language of the database schema. We define a pattern as a deductive rule expressed in user-defined terms that has a degree of certainty associated with it. We present methods of discovering interesting patterns based on abstracts which are summaries of the data expressed in the language of the user.Information Systems Working Papers Serie

    Additive Pattern Databases for Decoupled Search

    Get PDF
    Abstraction heuristics are the state of the art in optimal classical planning as heuristic search. Despite their success for explicit-state search, though, abstraction heuristics are not available for decoupled state-space search, an orthogonal reduction technique that can lead to exponential savings by decomposing planning tasks. In this paper, we show how to compute pattern database (PDB) heuristics for decoupled states. The main challenge lies in how to additively employ multiple patterns, which is crucial for strong search guidance of the heuristics. We show that in the general case, for arbitrary collections of PDBs, computing the heuristic for a decoupled state is exponential in the number of leaf components of decoupled search. We derive several variants of decoupled PDB heuristics that allow to additively combine PDBs avoiding this blow-up and evaluate them empirically

    Strengthening Canonical Pattern Databases with Structural Symmetries

    Get PDF
    Symmetry-based state space pruning techniques have proved to greatly improve heuristic search based classical planners. Similarly, abstraction heuristics in general and pattern databases in particular are key ingredients of such planners. However, only little work has dealt with how the abstraction heuristics behave under symmetries. In this work, we investigate the symmetry properties of the popular canonical pattern databases heuristic. Exploiting structural symmetries, we strengthen the canonical pattern databases by adding symmetric pattern databases, making the resulting heuristic invariant under structural symmetry, thus making it especially attractive for symmetry-based pruning search methods. Further, we prove that this heuristic is at least as informative as using symmetric lookups over the original heuristic. An experimental evaluation confirms these theoretical results
    corecore