58,215 research outputs found

    Steering Wheel Behavior Based Estimation of Fatigue

    Get PDF
    This paper examined a steering behavior based fatigue monitoring system. The advantages of using steering behavior for detecting fatigue are that these systems measure continuously, cheaply, non-intrusively, and robustly even under extremely demanding environmental conditions. The expected fatigue induced changes in steering behavior are a pattern of slow drifting and fast corrective counter steering. Using advanced signal processing procedures for feature extraction, we computed 3 feature set in the time, frequency and state space domain (a total number of 1251 features) to capture fatigue impaired steering patterns. Each feature set was separately fed into 5 machine learning methods (e.g. Support Vector Machine, K-Nearest Neighbor). The outputs of each single classifier were combined to an ensemble classification value. Finally we combined the ensemble values of 3 feature subsets to a of meta-ensemble classification value. To validate the steering behavior analysis, driving samples are taken from a driving simulator during a sleep deprivation study (N=12). We yielded a recognition rate of 86.1% in classifying slight from strong fatigue

    Pattern Recognition in Macroscopic and Dermoscopic Images for Skin Lesion Diagnosis

    Get PDF
    Pattern recognition in macroscopic and dermoscopic images is a challenging task in skin lesion diagnosis. The search for better performing classification has been a relevant issue for pattern recognition in images. Hence, this work was particularly focused on skin lesion pattern recognition, especially in macroscopic and dermoscopic images. For the pattern recognition in macroscopic images, a computational approach was developed to detect skin lesion features according to the asymmetry, border, colour and texture properties, as well as to diagnose types of skin lesions, i.e., nevus, seborrheic keratosis and melanoma. In this approach, an anisotropic diffusion filter is applied to enhance the input image and an active contour model without edges is used in the segmentation of the enhanced image. Finally, a support vector machine is used to classify each feature property according to their clinical principles, and also for the classification between different types of skin lesions. For the pattern recognition in dermoscopic images, classification models based on ensemble methods and input feature manipulation are used. The feature subsets was used to manipulate the input feature and to ensure the diversity of the ensemble models. Each ensemble classification model was generated by using an optimum-path forest classifier and integrated with a majority voting strategy. The performed experiments allowed to analyse the effectiveness of the developed approaches for pattern recognition in macroscopic and dermoscopic images, with the results obtained being very promising

    Ensemble machine learning approach for electronic nose signal processing

    Get PDF
    Electronic nose (e-nose) systems have been reported to be used in many areas as rapid, low- cost, and non-invasive instruments. Especially in meat production and processing, e-nose system is a powerful tool to process volatile compounds as a unique ‘fingerprint’. The ability of the pattern recognition algorithm to analyze e-nose signals is the key to the success of the e-nose system in many applications. On the other hand, ensemble methods have been reported for favorable performances in various data sets. This research proposes an ensemble learning approach for e-nose signal processing, especially in beef quality assessment. Ensemble methods are not only used for learning algorithms but also sensor array optimization. For sensor array optimization, three filter-based feature selection algorithms (FSAs) are used to build ensemble FSA such as reliefF, chi-square, and gini index. Ensemble FSA is developed to deal with different or unstable outputs of a single FSA on homogeneous e-nose data sets in beef quality monitoring. Moreover, ensemble learning algorithms are employed to deal with multi-class classification and regression tasks. Random forest and Adaboost are used that represent bagging and boosting algorithms, respectively. The results are also compared with support vector machine and decision tree as single learners. According to the experimental results, our ensemble approach has good performance and generalization in e-nose signal processing. Optimized sensor combination based on filter-based FSA shows stable results both in classification and regression tasks. Furthermore, Adaboost as a boosting algorithm produces the best prediction even though using a smaller number of sensor

    One-Class Classification: Taxonomy of Study and Review of Techniques

    Full text link
    One-class classification (OCC) algorithms aim to build classification models when the negative class is either absent, poorly sampled or not well defined. This unique situation constrains the learning of efficient classifiers by defining class boundary just with the knowledge of positive class. The OCC problem has been considered and applied under many research themes, such as outlier/novelty detection and concept learning. In this paper we present a unified view of the general problem of OCC by presenting a taxonomy of study for OCC problems, which is based on the availability of training data, algorithms used and the application domains applied. We further delve into each of the categories of the proposed taxonomy and present a comprehensive literature review of the OCC algorithms, techniques and methodologies with a focus on their significance, limitations and applications. We conclude our paper by discussing some open research problems in the field of OCC and present our vision for future research.Comment: 24 pages + 11 pages of references, 8 figure
    • …
    corecore