2,915 research outputs found

    Development of soft computing and applications in agricultural and biological engineering

    Get PDF
    Soft computing is a set of “inexact” computing techniques, which are able to model and analyze very complex problems. For these complex problems, more conventional methods have not been able to produce cost-effective, analytical, or complete solutions. Soft computing has been extensively studied and applied in the last three decades for scientific research and engineering computing. In agricultural and biological engineering, researchers and engineers have developed methods of fuzzy logic, artificial neural networks, genetic algorithms, decision trees, and support vector machines to study soil and water regimes related to crop growth, analyze the operation of food processing, and support decision-making in precision farming. This paper reviews the development of soft computing techniques. With the concepts and methods, applications of soft computing in the field of agricultural and biological engineering are presented, especially in the soil and water context for crop management and decision support in precision agriculture. The future of development and application of soft computing in agricultural and biological engineering is discussed

    Assessment of Dispersion and Bubble Entropy Measures for Enhancing Preterm Birth Prediction Based on Electrohysterographic Signals

    Full text link
    [EN] One of the remaining challenges for the scientific-technical community is predicting preterm births, for which electrohysterography (EHG) has emerged as a highly sensitive prediction technique. Sample and fuzzy entropy have been used to characterize EHG signals, although they require optimizing many internal parameters. Both bubble entropy, which only requires one internal parameter, and dispersion entropy, which can detect any changes in frequency and amplitude, have been proposed to characterize biomedical signals. In this work, we attempted to determine the clinical value of these entropy measures for predicting preterm birth by analyzing their discriminatory capacity as an individual feature and their complementarity to other EHG characteristics by developing six prediction models using obstetrical data, linear and non-linear EHG features, and linear discriminant analysis using a genetic algorithm to select the features. Both dispersion and bubble entropy better discriminated between the preterm and term groups than sample, spectral, and fuzzy entropy. Entropy metrics provided complementary information to linear features, and indeed, the improvement in model performance by including other non-linear features was negligible. The best model performance obtained an F1-score of 90.1 ± 2% for testing the dataset. This model can easily be adapted to real-time applications, thereby contributing to the transferability of the EHG technique to clinical practice.This work was supported by the Spanish Ministry of Economy and Competitiveness, the European Regional Development Fund (MCIU/AEI/FEDER, UE RTI2018-094449-A-I00-AR), and by the Generalitat Valenciana (AICO/2019/220)Nieto Del-Amor, F.; Beskhani, R.; Ye Lin, Y.; Garcia-Casado, J.; Díaz-Martínez, MDA.; Monfort-Ortiz, R.; Diago-Almela, VJ.... (2021). Assessment of Dispersion and Bubble Entropy Measures for Enhancing Preterm Birth Prediction Based on Electrohysterographic Signals. Sensors. 21(18):1-17. https://doi.org/10.3390/s21186071S117211

    Event Discovery and Classification in Space-Time Series: A Case Study for Storms

    Get PDF
    Recent advancement in sensor technology has enabled the deployment of wireless sensors for surveillance and monitoring of phenomenon in diverse domains such as environment and health. Data generated by these sensors are typically high-dimensional and therefore difficult to analyze and comprehend. Additionally, high level phenomenon that humans commonly recognize, such as storms, fire, traffic jams are often complex and multivariate which individual univariate sensors are incapable of detecting. This thesis describes the Event Oriented approach, which addresses these challenges by providing a way to reduce dimensionality of space-time series and a way to integrate multivariate data over space and/or time for the purpose of detecting and exploring high level events. The proposed Event Oriented approach is implemented using space-time series data from the Gulf of Maine Ocean Observation System (GOMOOS). GOMOOS is a long standing network of wireless sensors in the Gulf of Maine monitoring the high energy ocean environment. As a case study, high level storm events are detected and classified using the Event Oriented approach. A domain-independent ontology for detecting high level xvi composite events called a General Composite Event Ontology is presented and used as a basis of the Storm Event Ontology. Primitive events are detected from univariate sensors and assembled into Composite Storm Events using the Storm Event Ontology. To evaluate the effectiveness of the Event Oriented approach, the resulting candidate storm events are compared with an independent historic Storm Events Database from the National Climatic Data Center (NCDC) indicating that the Event Oriented approach detected about 92% of the storms recorded by the NCDC. The Event Oriented approach facilitates classification of high level composite event. In the case study, candidate storms were classified based on their spatial progression and profile. Since ontological knowledge is used for constructing high level event ontology, detection of candidate high level events could help refine existing ontological knowledge about them. In summary, this thesis demonstrates the Event Oriented approach to reduce dimensionality in complex space-time series sensor data and the facility to integrate ime series data over space for detecting high level phenomenon

    SciTech News Volume 71, No. 1 (2017)

    Get PDF
    Columns and Reports From the Editor 3 Division News Science-Technology Division 5 Chemistry Division 8 Engineering Division Aerospace Section of the Engineering Division 9 Architecture, Building Engineering, Construction and Design Section of the Engineering Division 11 Reviews Sci-Tech Book News Reviews 12 Advertisements IEEE
    • …
    corecore