22,889 research outputs found

    Advances on Concept Drift Detection in Regression Tasks using Social Networks Theory

    Full text link
    Mining data streams is one of the main studies in machine learning area due to its application in many knowledge areas. One of the major challenges on mining data streams is concept drift, which requires the learner to discard the current concept and adapt to a new one. Ensemble-based drift detection algorithms have been used successfully to the classification task but usually maintain a fixed size ensemble of learners running the risk of needlessly spending processing time and memory. In this paper we present improvements to the Scale-free Network Regressor (SFNR), a dynamic ensemble-based method for regression that employs social networks theory. In order to detect concept drifts SFNR uses the Adaptive Window (ADWIN) algorithm. Results show improvements in accuracy, especially in concept drift situations and better performance compared to other state-of-the-art algorithms in both real and synthetic data

    Quantum Mechanics Lecture Notes. Selected Chapters

    Full text link
    These are extended lecture notes of the quantum mechanics course which I am teaching in the Weizmann Institute of Science graduate physics program. They cover the topics listed below. The first four chapter are posted here. Their content is detailed on the next page. The other chapters are planned to be added in the coming months. 1. Motion in External Electromagnetic Field. Gauge Fields in Quantum Mechanics. 2. Quantum Mechanics of Electromagnetic Field 3. Photon-Matter Interactions 4. Quantization of the Schr\"odinger Field (The Second Quantization) 5. Open Systems. Density Matrix 6. Adiabatic Theory. The Berry Phase. The Born-Oppenheimer Approximation 7. Mean Field Approaches for Many Body Systems -- Fermions and Boson

    Multi-Graph Convolution Network for Pose Forecasting

    Full text link
    Recently, there has been a growing interest in predicting human motion, which involves forecasting future body poses based on observed pose sequences. This task is complex due to modeling spatial and temporal relationships. The most commonly used models for this task are autoregressive models, such as recurrent neural networks (RNNs) or variants, and Transformer Networks. However, RNNs have several drawbacks, such as vanishing or exploding gradients. Other researchers have attempted to solve the communication problem in the spatial dimension by integrating Graph Convolutional Networks (GCN) and Long Short-Term Memory (LSTM) models. These works deal with temporal and spatial information separately, which limits the effectiveness. To fix this problem, we propose a novel approach called the multi-graph convolution network (MGCN) for 3D human pose forecasting. This model simultaneously captures spatial and temporal information by introducing an augmented graph for pose sequences. Multiple frames give multiple parts, joined together in a single graph instance. Furthermore, we also explore the influence of natural structure and sequence-aware attention to our model. In our experimental evaluation of the large-scale benchmark datasets, Human3.6M, AMSS and 3DPW, MGCN outperforms the state-of-the-art in pose prediction.Comment: arXiv admin note: text overlap with arXiv:2110.04573 by other author

    Self-Supervised Learning to Prove Equivalence Between Straight-Line Programs via Rewrite Rules

    Full text link
    We target the problem of automatically synthesizing proofs of semantic equivalence between two programs made of sequences of statements. We represent programs using abstract syntax trees (AST), where a given set of semantics-preserving rewrite rules can be applied on a specific AST pattern to generate a transformed and semantically equivalent program. In our system, two programs are equivalent if there exists a sequence of application of these rewrite rules that leads to rewriting one program into the other. We propose a neural network architecture based on a transformer model to generate proofs of equivalence between program pairs. The system outputs a sequence of rewrites, and the validity of the sequence is simply checked by verifying it can be applied. If no valid sequence is produced by the neural network, the system reports the programs as non-equivalent, ensuring by design no programs may be incorrectly reported as equivalent. Our system is fully implemented for a given grammar which can represent straight-line programs with function calls and multiple types. To efficiently train the system to generate such sequences, we develop an original incremental training technique, named self-supervised sample selection. We extensively study the effectiveness of this novel training approach on proofs of increasing complexity and length. Our system, S4Eq, achieves 97% proof success on a curated dataset of 10,000 pairs of equivalent programsComment: 30 pages including appendi

    Copy-paste data augmentation for domain transfer on traffic signs

    Get PDF
    City streets carry a lot of information that can be exploited to improve the quality of the services the citizens receive. For example, autonomous vehicles need to act accordingly to all the element that are nearby the vehicle itself, like pedestrians, traffic signs and other vehicles. It is also possible to use such information for smart city applications, for example to predict and analyze the traffic or pedestrian flows. Among all the objects that it is possible to find in a street, traffic signs are very important because of the information they carry. This information can in fact be exploited both for autonomous driving and for smart city applications. Deep learning and, more generally, machine learning models however need huge quantities to learn. Even though modern models are very good at gener- alizing, the more samples the model has, the better it can generalize between different samples. Creating these datasets organically, namely with real pictures, is a very tedious task because of the wide variety of signs available in the whole world and especially because of all the possible light, orientation conditions and con- ditions in general in which they can appear. In addition to that, it may not be easy to collect enough samples for all the possible traffic signs available, cause some of them may be very rare to find. Instead of collecting pictures manually, it is possible to exploit data aug- mentation techniques to create synthetic datasets containing the signs that are needed. Creating this data synthetically allows to control the distribution and the conditions of the signs in the datasets, improving the quality and quantity of training data that is going to be used. This thesis work is about using copy-paste data augmentation to create synthetic data for the traffic sign recognition task

    Neural Architecture Search: Insights from 1000 Papers

    Full text link
    In the past decade, advances in deep learning have resulted in breakthroughs in a variety of areas, including computer vision, natural language understanding, speech recognition, and reinforcement learning. Specialized, high-performing neural architectures are crucial to the success of deep learning in these areas. Neural architecture search (NAS), the process of automating the design of neural architectures for a given task, is an inevitable next step in automating machine learning and has already outpaced the best human-designed architectures on many tasks. In the past few years, research in NAS has been progressing rapidly, with over 1000 papers released since 2020 (Deng and Lindauer, 2021). In this survey, we provide an organized and comprehensive guide to neural architecture search. We give a taxonomy of search spaces, algorithms, and speedup techniques, and we discuss resources such as benchmarks, best practices, other surveys, and open-source libraries

    What do new performance metrics, VeDBA and Dynamic yaw, tell us about energy-intensive activities in whale sharks?

    Get PDF
    During oscillatory dives, whale sharks (Rhincodon typus) expend varying levels of energy in active ascent and passive descent. They are expected to minimise movement costs by travelling at optimum speed unless having reason to move faster, for example during feeding or evasion of danger. A proxy for power, dynamic body acceleration (DBA) has previously been used to identify whale shark movement patterns but has yet been used to identify occasions where power is elevated above minimum requirements. 59 hours of biologging data from 13 juvenile whale sharks (Ningaloo Reef, Western Australia) including depth, body pitch angle, magnetometry and DBA, was analysed to investigate minimum power requirements for dives and identify events of elevated power. Dynamic yaw (the rate of change of heading), a new proxy for power, was introduced to determine its effectiveness compared to the already-established DBA. The relationship between pitch angle and these two proxies was investigated to determine which had the stronger relationship. Dynamic yaw produced a poor relationship with pitch angle compared to DBA, and thus DBA was selected as the focus proxy for the remainder of the study. DBA was utilised to produce a minimum power trend versus body pitch angle using a convex hull analysis which allowed for the identification of proxy for power utilisation above the minimum (PAM). 16 instances of PAM were identified in 59 hours of data, which could all be considered instances where energy minimisation is not prioritised, such as feeding or avoidance. The PAM method was capable of identifying instances where energy minimisation is not prioritised, and therefore has future implications in investigations of location-specific behaviours in relation to feeding and anthropogenic disturbance

    Augmented classification for electrical coil winding defects

    Get PDF
    A green revolution has accelerated over the recent decades with a look to replace existing transportation power solutions through the adoption of greener electrical alternatives. In parallel the digitisation of manufacturing has enabled progress in the tracking and traceability of processes and improvements in fault detection and classification. This paper explores electrical machine manufacture and the challenges faced in identifying failures modes during this life cycle through the demonstration of state-of-the-art machine vision methods for the classification of electrical coil winding defects. We demonstrate how recent generative adversarial networks can be used to augment training of these models to further improve their accuracy for this challenging task. Our approach utilises pre-processing and dimensionality reduction to boost performance of the model from a standard convolutional neural network (CNN) leading to a significant increase in accuracy
    • …
    corecore