1,375,987 research outputs found

    ABAW: Valence-Arousal Estimation, Expression Recognition, Action Unit Detection & Multi-Task Learning Challenges

    Get PDF
    This paper describes the third Affective Behavior Analysis in-the-wild (ABAW) Competition, held in conjunction with IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2022. The 3rd ABAW Competition is a continuation of the Competitions held at ICCV 2021, IEEE FG 2020 and IEEE CVPR 2017 Conferences, and aims at automatically analyzing affect. This year the Competition encompasses four Challenges: i) uni-task Valence-Arousal Estimation, ii) uni-task Expression Classification, iii) uni-task Action Unit Detection, and iv) Multi-Task-Learning. All the Challenges are based on a common benchmark database, Aff-Wild2, which is a large scale in-the-wild database and the first one to be annotated in terms of valence-arousal, expressions and action units. In this paper, we present the four Challenges, with the utilized Competition corpora, we outline the evaluation metrics and present the baseline systems along with their obtained results

    ClusterFace: Joint Clustering and Classification for Set-Based Face Recognition

    Get PDF
    Deep learning technology has enabled successful modeling of complex facial features when high quality images are available. Nonetheless, accurate modeling and recognition of human faces in real world scenarios `on the wild' or under adverse conditions remains an open problem. When unconstrained faces are mapped into deep features, variations such as illumination, pose, occlusion, etc., can create inconsistencies in the resultant feature space. Hence, deriving conclusions based on direct associations could lead to degraded performance. This rises the requirement for a basic feature space analysis prior to face recognition. This paper devises a joint clustering and classification scheme which learns deep face associations in an easy-to-hard way. Our method is based on hierarchical clustering where the early iterations tend to preserve high reliability. The rationale of our method is that a reliable clustering result can provide insights on the distribution of the feature space, that can guide the classification that follows. Experimental evaluations on three tasks, face verification, face identification and rank-order search, demonstrates better or competitive performance compared to the state-of-the-art, on all three experiments

    SSDL: Self-Supervised Domain Learning for Improved Face Recognition

    Get PDF
    Face recognition in unconstrained environments is challenging due to variations in illumination, quality of sensing, motion blur and etc. An individual’s face appearance can vary drastically under different conditions creating a gap between train (source) and varying test (target) data. The domain gap could cause decreased performance levels in direct knowledge transfer from source to target. Despite fine-tuning with domain specific data could be an effective solution, collecting and annotating data for all domains is extremely expensive. To this end, we propose a self-supervised domain learning (SSDL) scheme that trains on triplets mined from unlabelled data. A key factor in effective discriminative learning, is selecting informative triplets. Building on most confident predictions, we follow an “easy-to-hard” scheme of alternate triplet mining and self-learning. Comprehensive experiments on four different benchmarks show that SSDL generalizes well on different domains

    Deep Semantic Clustering by Partition Confidence Maximisation

    Get PDF
    By simultaneously learning visual features and data grouping, deep clustering has shown impressive ability to deal with unsupervised learning for structure analysis of high-dimensional visual data. Existing deep clustering methods typically rely on local learning constraints based on inter-sample relations and/or self-estimated pseudo labels. This is susceptible to the inevitable errors distributed in the neighbourhoods and suffers from error-propagation during training. In this work, we propose to solve this problem by learning the most confident clustering solution from all the possible separations, based on the observation that assigning samples from the same semantic categories into different clusters will reduce both the intra-cluster compactness and inter-cluster diversity, i.e. lower partition confidence. Specifically, we introduce a novel deep clustering method named PartItion Confidence mAximisation (PICA). It is established on the idea of learning the most semantically plausible data separation, in which all clusters can be mapped to the ground-truth classes one-to-one, by maximising the 'global' partition confidence of clustering solution. This is realised by introducing a differentiable partition uncertainty index and its stochastic approximation as well as a principled objective loss function that minimises such index, all of which together enables a direct adoption of the conventional deep networks and mini-batch based model training. Extensive experiments on six widely-adopted clustering benchmarks demonstrate our model's performance superiority over a wide range of the state-of-the-art approaches. The code is available online

    Image Search with Text Feedback by Visiolinguistic Attention Learning

    Get PDF
    Image search with text feedback has promising impacts in various real-world applications, such as e-commerce and internet search. Given a reference image and text feedback from user, the goal is to retrieve images that not only resemble the input image, but also change certain aspects in accordance with the given text. This is a challenging task as it requires the synergistic understanding of both image and text. In this work, we tackle this task by a novel Visiolinguistic Attention Learning (VAL) framework. Specifically, we propose a composite transformer that can be seamlessly plugged in a CNN to selectively preserve and transform the visual features conditioned on language semantics. By inserting multiple composite transformers at varying depths, VAL is incentive to encapsulate the multi-granular visiolinguistic information, thus yielding an expressive representation for effective image search. We conduct comprehensive evaluation on three datasets: Fashion200k, Shoes and FashionIQ. Extensive experiments show our model exceeds existing approaches on all datasets, demonstrating consistent superiority in coping with various text feedbacks, including attribute-like and natural language descriptions

    The effect of spectrogram reconstructions on automatic music transcription: an alternative approach to improve transcription accuracy

    Get PDF
    Most of the state-of-the-art automatic music transcription (AMT) models break down the main transcription task into sub-tasks such as onset prediction and offset prediction and train them with onset and offset labels. These predictions are then concatenated together and used as the input to train another model with the pitch labels to obtain the final transcription. We attempt to use only the pitch labels (together with spectrogram reconstruction loss) and explore how far this model can go without introducing supervised sub-tasks. In this paper, we do not aim at achieving state-of-the-art transcription accuracy, instead, we explore the effect that spectrogram reconstruction has on our AMT model. Our proposed model consists of two U-nets: the first U-net transcribes the spectrogram into a posteriorgram, and a second U-net transforms the posteriorgram back into a spectrogram. A reconstruction loss is applied between the original spectrogram and the reconstructed spectrogram to constrain the second U-net to focus only on reconstruction. We train our model on three different datasets: MAPS, MAESTRO, and MusicNet. Our experiments show that adding the reconstruction loss can generally improve the note-level transcription accuracy when compared to the same model without the reconstruction part. Moreover, it can also boost the frame-level precision to be higher than the state-of-the-art models. The feature maps learned by our U-net contain gridlike structures (not present in the baseline model) which implies that with the presence of the reconstruction loss, the model is probably trying to count along both the time and frequency axis, resulting in a higher note-level transcription accuracy

    Pattern recognition technique

    Get PDF
    Technique operates regardless of pattern rotation, translation or magnification and successfully detects out-of-register patterns. It improves accuracy and reduces cost of various optical character recognition devices and page readers and provides data input to computer
    • …