85 research outputs found

    Computer-assisted pre-operative automatic segmentation and registration tool for malunited radius osteotomy: A proof-of-concept study

    Get PDF
    Corrective osteotomy is a standard treatment for distal radius fractures in malunited radius cases. In order to increase the efficiency of the osteotomy pre-operative plan, in this study, a proof-of-concept framework of automatic computer-assisted segmentation and registration tool was developed for the purpose of malunited radius osteotomy pre-operative planning. The program consisted of the functions of segmentation, virtual cutting, automatic alignment and registration. One computed tomography (CT) scanning dataset of a patient's bilateral forearm was employed as an illustration example in this study. Three templates of 3D models including the healthy radius, and the pre- and post-correction injured radius were output as STL geometries for pre-operative plan purposes

    A semi-automatic computer-aided method for surgical template design

    Get PDF
    This paper presents a generalized integrated framework of semi-automatic surgical template design. Several algorithms were implemented including the mesh segmentation, offset surface generation, collision detection, ruled surface generation, etc., and a special software named TemDesigner was developed. With a simple user interface, a customized template can be semi- automatically designed according to the preoperative plan. Firstly, mesh segmentation with signed scalar of vertex is utilized to partition the inner surface from the input surface mesh based on the indicated point loop. Then, the offset surface of the inner surface is obtained through contouring the distance field of the inner surface, and segmented to generate the outer surface. Ruled surface is employed to connect inner and outer surfaces. Finally, drilling tubes are generated according to the preoperative plan through collision detection and merging. It has been applied to the template design for various kinds of surgeries, including oral implantology, cervical pedicle screw insertion, iliosacral screw insertion and osteotomy, demonstrating the efficiency, functionality and generality of our method.Comment: 18 pages, 16 figures, 2 tables, 36 reference

    3D Innovations in Personalized Surgery

    Get PDF
    Current practice involves the use of 3D surgical planning and patient-specific solutions in multiple surgical areas of expertise. Patient-specific solutions have been endorsed for several years in numerous publications due to their associated benefits around accuracy, safety, and predictability of surgical outcome. The basis of 3D surgical planning is the use of high-quality medical images (e.g., CT, MRI, or PET-scans). The translation from 3D digital planning toward surgical applications was developed hand in hand with a rise in 3D printing applications of multiple biocompatible materials. These technical aspects of medical care require engineers’ or technical physicians’ expertise for optimal safe and effective implementation in daily clinical routines.The aim and scope of this Special Issue is high-tech solutions in personalized surgery, based on 3D technology and, more specifically, bone-related surgery. Full-papers or highly innovative technical notes or (systematic) reviews that relate to innovative personalized surgery are invited. This can include optimization of imaging for 3D VSP, optimization of 3D VSP workflow and its translation toward the surgical procedure, or optimization of personalized implants or devices in relation to bone surgery

    Custom-Made Devices Represent a Promising Tool to Increase Correction Accuracy of High Tibial Osteotomy: A Systematic Review of the Literature and Presentation of Pilot Cases with a New 3D-Printed System

    Get PDF
    Background: The accuracy of the coronal alignment corrections using conventional high tibial osteotomy (HTO) falls short, and multiplanar deformities of the tibia require consideration of both the coronal and sagittal planes. Patient-specific instrumentations have been introduced to improve the control of the correction. Clear evidence about customized devices for HTO and their correction accuracy lacks. Methods: The databases PUBMED and EMBASE were systematically screened for human and cadaveric studies about the use of customized devices for high tibial osteotomy and their outcomes concerning correction accuracy. Furthermore, a 3D-printed customized system for valgus HTO with three pilot cases at one-year follow-up was presented. Results: 28 studies were included. The most commonly used custom-made devices for HTO were found to be cutting guides. Reported differences between the achieved and targeted correction of hip-knee-ankle angle and the posterior tibial slope were 3 degrees or under. The three pilot cases that underwent personalized HTO with a new 3D-printed device presented satisfactory alignment and clinical outcomes at one-year follow-up. Conclusion: The available patient-specific devices described in the literature, including the one used in the preliminary cases of the current study, showed promising results in increasing the accuracy of correction in HTO procedure

    Radiological Society of North America (RSNA) 3D printing Special Interest Group (SIG): Guidelines for medical 3D printing and appropriateness for clinical scenarios

    Get PDF
    Este número da revista Cadernos de Estudos Sociais estava em organização quando fomos colhidos pela morte do sociólogo Ernesto Laclau. Seu falecimento em 13 de abril de 2014 surpreendeu a todos, e particularmente ao editor Joanildo Burity, que foi seu orientando de doutorado na University of Essex, Inglaterra, e que recentemente o trouxe à Fundação Joaquim Nabuco para uma palestra, permitindo que muitos pudessem dialogar com um dos grandes intelectuais latinoamericanos contemporâneos. Assim, buscamos fazer uma homenagem ao sociólogo argentino publicando uma entrevista inédita concedida durante a sua passagem pelo Recife, em 2013, encerrando essa revista com uma sessão especial sobre a sua trajetória

    Primjena 3D pisača u veterinarstvu- pregledni članak

    Get PDF
    Three-dimensional printing, which appeared in the 1980s and has been steadily improving ever since, is a new and very promising technology. Thanks to its unique process of depositing material layer by layer, it differentiates itself from the rest of the traditional methods of modeling by molding and removing material. Modeling by adding material allows 3D printing to create parts with very complex geometries, and even with unprecedented precision. This last characteristic allows it to be used in many sectors including aviation, automotive, production but also science, education and medicine. With regard to these latter fields of application, printing by adding material is for some authors a real revolution. For modeling learning and training mockups, manufacturing custom prostheses, or printing biological and functional organs, the range of possible uses for 3D printing seems immense and very promising. In this study, we invite you to discover the main applications of the 3D printer in veterinary medicineTrodimenzionalni ispis koji se pojavio 1980-ih godina od tada se stalno poboljšava i predstavlja novu i vrlo obećavajuću tehnologiju. Zahvaljujući svom jedinstvenom procesu deponiranja materijala sloj po sloj, razlikuje se od ostalih tradicionalnih metoda modeliranja lijevanjem u kalupe i uklanjanjem materijala. Modeliranje dodavanjem materijala omogućuje kreiranje dijelova vrlo kompleksnih geometrija pomoću 3D ispisa, uz nikada ranije dostignutu preciznost. Ova posljednja karakteristika dopušta njegovu uporabu u brojnim sektorima uključujući: zrakoplovstvo, automobilsku industriju, proizvodnju, ali i znanost, obrazovanje i medicinu. S obzirom na ova posljednja spomenuta područja primjene, ispis dodavanjem materijala za neke autore predstavlja pravu revoluciju. Za učenje pomoću modela i uvježbavanje na modelima, proizvodnju prilagođenih proteza, ili ispis bioloških i funkcionalnih organa, raspon mogućih primjena 3D ispisa čini se neizmjernim i vrlo obećavajućim. U ovoj vas studiji pozivamo da otkrijete mogućnosti primjene 3D ispisa u veterinarstvu
    corecore