325 research outputs found

    Epileptic Seizure Classification Using Image-Based Data Representation

    Get PDF
    Epilepsy is a recurrence of seizures caused by a disorder of the brain in over 3.4 million people nationwide. Some people are able to predict their seizures based off prodrome, which is an early sign or symptom that usually resembles mood changes or a euphoric feeling even days to an hour before occurrence. Consequently, the natural instincts of the body to react to an upcoming attack lends credence to the existence of a pre-ictal state that precedes seizure episodes. Physicians and researchers have thus sought for an automated approach for predicting or detecting seizures. In this research, we evaluate the image-based representation of EEG as a basis for classification and training of machine learning algorithms. We explore only the raw EEG data for images in lossless image file formats, though there are other forms including symbolized and noise-filtered that can be explored. Furthermore, we evaluate different color mapping schemes (symbolized, default, chromatic, and binned) that assign EEG data values to Red-Green-Blue (RGB) pixel values. We report the performance of machine learning algorithms such as Random Forest to accurately classify EEG-based images as either event (with a seizure) or non-event (without a seizure)

    Towards developing a reliable medical device for automated epileptic seizure detection in the ICU

    Get PDF
    Abstract. Epilepsy is a prevalent neurological disorder that affects millions of people globally, and its diagnosis typically involves laborious manual inspection of electroencephalography (EEG) data. Automated detection of epileptic seizures in EEG signals could potentially improve diagnostic accuracy and reduce diagnosis time, but there should be special attention to the number of false alarms to reduce unnecessary treatments and costs. This research presents a study on the use of machine learning techniques for EEG seizure detection with the aim of investigating the effectiveness of different algorithms in terms of high sensitivity and low false alarm rates for feature extraction, selection, pre-processing, classification, and post-processing in designing a medical device for detecting seizure activity in EEG data. The current state-of-the-art methods which are validated clinically using large amounts of data are introduced. The study focuses on finding potential machine learning methods, considering KNN, SVM, decision trees and, Random forests, and compares their performance on the task of seizure detection using features introduced in the literature. Also using ensemble methods namely, bootstrapping and majority voting techniques we achieved a sensitivity of 0.80 and FAR/h of 2.10, accuracy of 97.1% and specificity of 98.2%. Overall, the findings of this study can be useful for developing more accurate and efficient algorithms for EEG seizure detection medical device, which can contribute to the early diagnosis and treatment of epilepsy in the intensive care unit for critically ill patients

    Automatic Response Assessment in Regions of Language Cortex in Epilepsy Patients Using ECoG-based Functional Mapping and Machine Learning

    Full text link
    Accurate localization of brain regions responsible for language and cognitive functions in Epilepsy patients should be carefully determined prior to surgery. Electrocorticography (ECoG)-based Real Time Functional Mapping (RTFM) has been shown to be a safer alternative to the electrical cortical stimulation mapping (ESM), which is currently the clinical/gold standard. Conventional methods for analyzing RTFM signals are based on statistical comparison of signal power at certain frequency bands. Compared to gold standard (ESM), they have limited accuracies when assessing channel responses. In this study, we address the accuracy limitation of the current RTFM signal estimation methods by analyzing the full frequency spectrum of the signal and replacing signal power estimation methods with machine learning algorithms, specifically random forest (RF), as a proof of concept. We train RF with power spectral density of the time-series RTFM signal in supervised learning framework where ground truth labels are obtained from the ESM. Results obtained from RTFM of six adult patients in a strictly controlled experimental setup reveal the state of the art detection accuracy of ≈78%\approx 78\% for the language comprehension task, an improvement of 23%23\% over the conventional RTFM estimation method. To the best of our knowledge, this is the first study exploring the use of machine learning approaches for determining RTFM signal characteristics, and using the whole-frequency band for better region localization. Our results demonstrate the feasibility of machine learning based RTFM signal analysis method over the full spectrum to be a clinical routine in the near future.Comment: This paper will appear in the Proceedings of IEEE International Conference on Systems, Man and Cybernetics (SMC) 201

    EEG-Based Classification and Advanced Warning of Epileptic Seizures

    Get PDF
    Epilepsy is the second most common neurological disease after stroke. Epileptics may suffer hundreds of seizures per day, yet one is enough to put a person in constant fear of the next. The sudden and unexpected onset of seizures has debilitating and sometimes fatal consequences. The development of a real-time seizure prediction and alerting device would greatly improve epileptics’ quality of life. Major challenges for such a device include determining predictive features and discovering the maximum prediction window. Using the novel approach of random forest classification on EEG data, this research investigates the predictive features among the common EEG frequency bands for one patient with partial complex and partial with secondarily generalized seizures. The impact on classifier performance of labeling the transitional brain states is also investigated, using a time-series accuracy graph. Predictive features are found as far as 40 minutes in advance of two seizures, specifically in the beta frequencies of one brain node. The random forest classifier does not perform well, but shows promise for improved performance with minor adjustments in training. The time-series accuracy graphs prove a useful tool for visualization and insight into classifier performance that is lacking in other evaluation methods

    Integrated Machine Learning Approaches to Improve Classification performance and Feature Extraction Process for EEG Dataset

    Get PDF
    Epileptic seizure or epilepsy is a chronic neurological disorder that occurs due to brain neurons\u27 abnormal activities and has affected approximately 50 million people worldwide. Epilepsy can affect patients’ health and lead to life-threatening emergencies. Early detection of epilepsy is highly effective in avoiding seizures by intervening in treatment. The electroencephalogram (EEG) signal, which contains valuable information of electrical activity in the brain, is a standard neuroimaging tool used by clinicians to monitor and diagnose epilepsy. Visually inspecting the EEG signal is an expensive, tedious, and error-prone practice. Moreover, the result varies with different neurophysiologists for an identical reading. Thus, automatically classifying epilepsy into different epileptic states with a high accuracy rate is an urgent requirement and has long been investigated. This PhD thesis contributes to the epileptic seizure detection problem using Machine Learning (ML) techniques. Machine learning algorithms have been implemented to automatically classifying epilepsy from EEG data. Imbalance class distribution problems and effective feature extraction from the EEG signals are the two major concerns towards effectively and efficiently applying machine learning algorithms for epilepsy classification. The algorithms exhibit biased results towards the majority class when classes are imbalanced, while effective feature extraction can improve classification performance. In this thesis, we presented three different novel frameworks to effectively classify epileptic states while addressing the above issues. Firstly, a deep neural network-based framework exploring different sampling techniques was proposed where both traditional and state-of-the-art sampling techniques were experimented with and evaluated for their capability of improving the imbalance ratio and classification performance. Secondly, a novel integrated machine learning-based framework was proposed to effectively learn from EEG imbalanced data leveraging the Principal Component Analysis method to extract high- and low-variant principal components, which are empirically customized for the imbalanced data classification. This study showed that principal components associated with low variances can capture implicit patterns of the minority class of a dataset. Next, we proposed a novel framework to effectively classify epilepsy leveraging summary statistics analysis of window-based features of EEG signals. The framework first denoised the signals using power spectrum density analysis and replaced outliers with k-NN imputer. Next, window level features were extracted from statistical, temporal, and spectral domains. Basic summary statistics are then computed from the extracted features to feed into different machine learning classifiers. An optimal set of features are selected leveraging variance thresholding and dropping correlated features before feeding the features for classification. Finally, we applied traditional machine learning classifiers such as Support Vector Machine, Decision Tree, Random Forest, and k-Nearest Neighbors along with Deep Neural Networks to classify epilepsy. We experimented the frameworks with a benchmark dataset through rigorous experimental settings and displayed the effectiveness of the proposed frameworks in terms of accuracy, precision, recall, and F-beta score

    TEMPORAL DATA EXTRACTION AND QUERY SYSTEM FOR EPILEPSY SIGNAL ANALYSIS

    Get PDF
    The 2016 Epilepsy Innovation Institute (Ei2) community survey reported that unpredictability is the most challenging aspect of seizure management. Effective and precise detection, prediction, and localization of epileptic seizures is a fundamental computational challenge. Utilizing epilepsy data from multiple epilepsy monitoring units can enhance the quantity and diversity of datasets, which can lead to more robust epilepsy data analysis tools. The contributions of this dissertation are two-fold. One is the implementation of a temporal query for epilepsy data; the other is the machine learning approach for seizure detection, seizure prediction, and seizure localization. The three key components of our temporal query interface are: 1) A pipeline for automatically extract European Data Format (EDF) information and epilepsy annotation data from cross-site sources; 2) Data quantity monitoring for Epilepsy temporal data; 3) A web-based annotation query interface for preliminary research and building customized epilepsy datasets. The system extracted and stored about 450,000 epilepsy-related events of more than 2,497 subjects from seven institutes up to September 2019. Leveraging the epilepsy temporal events query system, we developed machine learning models for seizure detection, prediction, and localization. Using 135 extracted features from EEG signals, we trained a channel-based eXtreme Gradient Boosting model to detect seizures on 8-second EEG segments. A long-term EEG recording evaluation shows that the model can detect about 90.34% seizures on an existing EEG dataset with 961 hours of data. The model achieved 89.88% accuracy, 92.32% sensitivity, and 84.76% AUC based on the segments evaluation. We also introduced a transfer learning approach consisting of 1) a base deep learning model pre-trained by ImageNet dataset and 2) customized fully connected layers, to train the patient-specific pre-ictal and inter-ictal data from our database. Two convolutional neural network architectures were evaluated using 53 pre-ictal segments and 265 continuous hours of inter-ictal EEG data. The evaluation shows that our model reached 86.79% sensitivity and 3.38% false-positive rate. Another transfer learning model for seizure localization uses a pre-trained ResNext50 structure and was trained with an image augmentation dataset labeling by fingerprint. Our model achieved 88.22% accuracy, 34.99% sensitivity, 1.02% false-positive rate, and 34.3% positive likelihood rate

    Performance Analysis of Deep-Learning and Explainable AI Techniques for Detecting and Predicting Epileptic Seizures

    Get PDF
    Epilepsy is one of the most common neurological diseases globally. Notably, people in low to middle-income nations could not get proper epilepsy treatment due to the cost and availability of medical infrastructure. The risk of sudden unpredicted death in Epilepsy is considerably high. Medical statistics reveal that people with Epilepsy die more prematurely than those without the disease. Early and accurately diagnosing diseases in the medical field is challenging due to the complex disease patterns and the need for time-sensitive medical responses to the patients. Even though numerous machine learning and advanced deep learning techniques have been employed for the seizure stages classification and prediction, understanding the causes behind the decision is difficult, termed a black box problem. Hence, doctors and patients are confronted with the black box decision-making to initiate the appropriate treatment and understand the disease patterns respectively. Owing to the scarcity of epileptic Electroencephalography (EEG) data, training the deep learning model with diversified epilepsy knowledge is still critical. Explainable Artificial intelligence has become a potential solution to provide the explanation and result interpretation of the learning models. By applying the explainable AI, there is a higher possibility of examining the features that influence the decision-making that either the patient recorded from epileptic or non-epileptic EEG signals. This paper reviews the various deep learning and Explainable AI techniques used for detecting and predicting epileptic seizures  using EEG data. It provides a comparative analysis of the different techniques based on their performance

    Random neural network based epileptic seizure episode detection exploiting electroencephalogram signals

    Get PDF
    Epileptic seizures are caused by abnormal electrical activity in the brain that manifests itself in a variety of ways, including confusion and loss of awareness. Correct identification of epileptic seizures is critical in the treatment and management of patients with epileptic disorders. One in four patients present resistance against seizures episodes and are in dire need of detecting these critical events through continuous treatment in order to manage the specific disease. Epileptic seizures can be identified by reliably and accurately monitoring the patients’ neuro and muscle activities, cardiac activity, and oxygen saturation level using state-of-the-art sensing techniques including electroencephalograms (EEGs), electromyography (EMG), electrocardiograms (ECGs), and motion or audio/video recording that focuses on the human head and body. EEG analysis provides a prominent solution to distinguish between the signals associated with epileptic episodes and normal signals; therefore, this work aims to leverage on the latest EEG dataset using cutting-edge deep learning algorithms such as random neural network (RNN), convolutional neural network (CNN), extremely random tree (ERT), and residual neural network (ResNet) to classify multiple variants of epileptic seizures from non-seizures. The results obtained highlighted that RNN outperformed all other algorithms used and provided an overall accuracy of 97%, which was slightly improved after cross validation
    • …
    corecore