79 research outputs found

    A New Parametrization for Independent Set Reconfiguration and Applications to RNA Kinetics

    Get PDF
    International audienceIn this paper, we study the Independent Set (IS) reconfiguration problem in graphs. An IS reconfiguration is a scenario transforming an IS L into another IS R, inserting/removing vertices one step at a time while keeping the cardinalities of intermediate sets greater than a specified threshold. We focus on the bipartite variant where only start and end vertices are allowed in intermediate ISs. Our motivation is an application to the RNA energy barrier problem from bioinformatics, for which a natural parameter would be the difference between the initial IS size and the threshold. We first show the para-NP hardness of the problem with respect to this parameter. We then investigate a new parameter, the cardinality range, denoted by ρ which captures the maximum deviation of the reconfiguration scenario from optimal sets (formally, ρ is the maximum difference between the cardinalities of an intermediate IS and an optimal IS). We give two different routes to show that this problem is in XP for ρ: The first is a direct O(n 2)-space, O(n 2ρ+2.5)-time algorithm based on a separation lemma; The second builds on a parameterized equivalence with the directed pathwidth problem, leading to a O(n ρ+1)-space, O(n ρ+2)-time algorithm for the reconfiguration problem through an adaptation of a prior result by Tamaki [20]. This equivalence is an interesting result in its own right, connecting a reconfiguration problem (which is essentially a connectivity problem within a reconfiguration network) with a structural parameter for an auxiliary graph. We demonstrate the practicality of these algorithms, and the relevance of our introduced parameter, by considering the application of our algorithms on random small-degree instances for our problem. Moreover, we reformulate the computation of the energy barrier between two RNA secondary structures, a classic hard problem in computational biology, as an instance of bipartite reconfiguration. Our results on IS reconfiguration thus yield an XP algorithm in O(n ρ+2) for the energy barrier problem, improving upon a partial O(n 2ρ+2.5) algorithm for the problem

    Solving Vertex Cover in Polynomial Time on Hyperbolic Random Graphs

    Get PDF
    The VertexCover problem is proven to be computationally hard in different ways: It is NP-complete to find an optimal solution and even NP-hard to find an approximation with reasonable factors. In contrast, recent experiments suggest that on many real-world networks the run time to solve VertexCover is way smaller than even the best known FPT-approaches can explain. Similarly, greedy algorithms deliver very good approximations to the optimal solution in practice. We link these observations to two properties that are observed in many real-world networks, namely a heterogeneous degree distribution and high clustering. To formalize these properties and explain the observed behavior, we analyze how a branch-and-reduce algorithm performs on hyperbolic random graphs, which have become increasingly popular for modeling real-world networks. In fact, we are able to show that the VertexCover problem on hyperbolic random graphs can be solved in polynomial time, with high probability. The proof relies on interesting structural properties of hyperbolic random graphs. Since these predictions of the model are interesting in their own right, we conducted experiments on real-world networks showing that these properties are also observed in practice. When utilizing the same structural properties in an adaptive greedy algorithm, further experiments suggest that, on real instances, this leads to better approximations than the standard greedy approach within reasonable time

    Hardness of Metric Dimension in Graphs of Constant Treewidth

    Get PDF
    The Metric Dimension problem asks for a minimum-sized resolving set in a given (unweighted, undirected) graph G. Here, a set S ? V(G) is resolving if no two distinct vertices of G have the same distance vector to S. The complexity of Metric Dimension in graphs of bounded treewidth remained elusive in the past years. Recently, Bonnet and Purohit [IPEC 2019] showed that the problem is W[1]-hard under treewidth parameterization. In this work, we strengthen their lower bound to show that Metric Dimension is NP-hard in graphs of treewidth 24

    Metric Dimension Parameterized By Treewidth

    Get PDF
    A resolving set S of a graph G is a subset of its vertices such that no two vertices of G have the same distance vector to S. The METRIC DIMENSION problem asks for a resolving set of minimum size, and in its decision form, a resolving set of size at most some specified integer. This problem is NP-complete, and remains so in very restricted classes of graphs. It is also W[2]-complete with respect to the size of the solution. METRIC DIMENSION has proven elusive on graphs of bounded treewidth. On the algorithmic side, a polynomial time algorithm is known for trees, and even for outerplanar graphs, but the general case of treewidth at most two is open. On the complexity side, no parameterized hardness is known. This has led several papers on the topic to ask for the parameterized complexity of METRIC DIMENSION with respect to treewidth. We provide a first answer to the question. We show that METRIC DIMENSION parameterized by the treewidth of the input graph is W[1]-hard. More refinedly we prove that, unless the Exponential Time Hypothesis fails, there is no algorithm solving METRIC DIMENSION in time f(pw)no(pw) on n-vertex graphs of constant degree, with pw the pathwidth of the input graph, and f any computable function. This is in stark contrast with an FPT algorithm of Belmonte et al. (SIAM J Discrete Math 31(2):1217–1243, 2017) with respect to the combined parameter tl+Δ, where tl is the tree-length and Δ the maximum-degree of the input graph.publishedVersio

    Topics in Graph Algorithms: Structural Results and Algorithmic Techniques, with Applications

    Get PDF
    Coping with computational intractability has inspired the development of a variety of algorithmic techniques. The main challenge has usually been the design of polynomial time algorithms for NP-complete problems in a way that guarantees some, often worst-case, satisfactory performance when compared to exact (optimal) solutions. We mainly study some emergent techniques that help to bridge the gap between computational intractability and practicality. We present results that lead to better exact and approximation algorithms and better implementations. The problems considered in this dissertation share much in common structurally, and have applications in several scientific domains, including circuit design, network reliability, and bioinformatics. We begin by considering the relationship between graph coloring and the immersion order, a well-quasi-order defined on the set of finite graphs. We establish several (structural) results and discuss their potential algorithmic consequences. We discuss graph metrics such as treewidth and pathwidth. Treewidth is well studied, mainly because many problems that are NP-hard in general have polynomial time algorithms when restricted to graphs of bounded treewidth. Pathwidth has many applications ranging from circuit layout to natural language processing. We present a linear time algorithm to approximate the pathwidth of planar graphs that have a fixed disk dimension. We consider the face cover problem, which has potential applications in facilities location and logistics. Being fixed-parameter tractable, we develop an algorithm that solves it in time O(5k + n2) where k is the input parameter. This is a notable improvement over the previous best known algorithm, which runs in O(8kn). In addition to the structural and algorithmic results, this text tries to illustrate the practicality of fixed-parameter algorithms. This is achieved by implementing some algorithms for the vertex cover problem, and conducting experiments on real data sets. Our experiments advocate the viewpoint that, for many practical purposes, exact solutions of some NP-complete problems are affordable

    Metric Dimension Parameterized by Treewidth

    Get PDF
    A resolving set S of a graph G is a subset of its vertices such that no two vertices of G have the same distance vector to S. The Metric Dimension problem asks for a resolving set of minimum size, and in its decision form, a resolving set of size at most some specified integer. This problem is NP-complete, and remains so in very restricted classes of graphs. It is also W[2]-complete with respect to the size of the solution. Metric Dimension has proven elusive on graphs of bounded treewidth. On the algorithmic side, a polytime algorithm is known for trees, and even for outerplanar graphs, but the general case of treewidth at most two is open. On the complexity side, no parameterized hardness is known. This has led several papers on the topic to ask for the parameterized complexity of Metric Dimension with respect to treewidth. We provide a first answer to the question. We show that Metric Dimension parameterized by the treewidth of the input graph is W[1]-hard. More refinedly we prove that, unless the Exponential Time Hypothesis fails, there is no algorithm solving Metric Dimension in time f(pw)n^{o(pw)} on n-vertex graphs of constant degree, with pw the pathwidth of the input graph, and f any computable function. This is in stark contrast with an FPT algorithm of Belmonte et al. [SIAM J. Discrete Math. \u2717] with respect to the combined parameter tl+Delta, where tl is the tree-length and Delta the maximum-degree of the input graph

    Solving Vertex Cover in Polynomial Time on Hyperbolic Random Graphs

    Get PDF
    The computational complexity of the VERTEXCOVER problem has been studied extensively. Most notably, it is NP-complete to find an optimal solution and typically NP-hard to find an approximation with reasonable factors. In contrast, recent experiments suggest that on many real-world networks the run time to solve VERTEXCOVER is way smaller than even the best known FPT-approaches can explain. We link these observations to two properties that are observed in many real-world networks, namely a heterogeneous degree distribution and high clustering. To formalize these properties and explain the observed behavior, we analyze how a branch-and-reduce algorithm performs on hyperbolic random graphs, which have become increasingly popular for modeling real-world networks. In fact, we are able to show that the VERTEXCOVER problem on hyperbolic random graphs can be solved in polynomial time, with high probability. The proof relies on interesting structural properties of hyperbolic random graphs. Since these predictions of the model are interesting in their own right, we conducted experiments on real-world networks showing that these properties are also observed in practice
    corecore